File size: 6,111 Bytes
4ab846c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
from tqdm import tqdm
import shutil
os.environ['HF_ENDPOINT']="https://hf-mirror.com"
from qwenva import tokenizer
from qwenva import processor
from qwenva import qwenva
images_file_path="/root/autodl-tmp/images"
import torch
from torch.utils.data import Dataset, DataLoader
import os
import json
from PIL import Image
import json
with open('/root/autodl-tmp/chat.json', 'r', encoding='utf-8') as f:
chat_data = json.load(f)
image_token=tokenizer.encode('<image>')[0]
pad_token=tokenizer.pad_token_id
image_token=tokenizer.encode('<image>')[0]
pad_token=tokenizer.pad_token_id
def process_data(sample,max_len=8012):
conversations=sample['conversations']
labels=[]
input_ids=[]
flag=0
messages=[]
input_ids=[]
for index,item in enumerate(conversations):
if item['from']=='human':
old_input_ids=input_ids
messages.append({'role':'user','content':item['value']})
input_ids=tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
#input_ids+=input_token[]
labels+=[-100]*(len(input_ids)-len(old_input_ids))
if index==flag:
try:
image_index=input_ids.index(image_token)
labels[image_index]=image_token
except ValueError:
print("image token not found")
flag=index+1
continue
elif item['from']=='gpt':
old_input_ids=input_ids
messages.append({'role':'assistant','content':item['value']})
input_ids=tokenizer.apply_chat_template(
messages
)
flag=index+1
labels+=input_ids[len(old_input_ids):]
#填充或者截断,使得长度相同
if len(input_ids)>max_len:
input_ids=input_ids[:max_len]
labels=labels[:max_len]
attention_mask=[1]*len(input_ids)
else:
attention_mask=[1]*len(input_ids)+[0]*(max_len-len(input_ids))
input_ids+=[pad_token]*(max_len-len(input_ids))
labels+=[-100]*(max_len-len(labels))
#转化为张量
input_ids=torch.tensor(input_ids)
attention_mask=torch.tensor(attention_mask)
labels=torch.tensor(labels)
image_index=torch.tensor(image_index)
return {
'input_ids':input_ids,
'attention_mask':attention_mask,
'labels':labels,
'image_idx':image_index
}
import os
import torch
from torch.utils.data import Dataset
from PIL import Image
class MyDataset(Dataset):
def __init__(self, images_file_path,data,max_len=1024):
self.max_len=max_len
self.images_file_path = images_file_path
self.data = data
self.max_len=max_len
def __len__(self):
return len(self.data)
def __getitem__(self, index):
output_=process_data(self.data[index],max_len=self.max_len)
img_path=os.path.join(self.images_file_path,self.data[index]['image'])
img=Image.open(img_path)
input_pixel= processor(images=img, return_tensors="pt")
output_['input_pixel']=input_pixel['pixel_values'].squeeze()
return output_
dataset=MyDataset(images_file_path,chat_data,max_len=360)
train_loader=DataLoader(dataset,batch_size=8,shuffle=True)
import deepspeed
import argparse
# 设置设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
qwenva=qwenva.to(device)
model_engine,optimizer,_,_=deepspeed.initialize(
model=qwenva,
args=argparse.Namespace(),
model_parameters=qwenva.parameters(),
config_params="./deepspeed_config.json"
)
#checkpoint_path = "/root/autodl-tmp/best_model_2"
#model_engine.load_checkpoint(checkpoint_path)
import torch.optim as optim
import torch.nn as nn
from torch.amp import autocast, GradScaler
#optimizer = optim.Adam(model.parameters(), lr=0.001)
loss_fn = nn.CrossEntropyLoss()
#eps = 1e-8
accumulation_steps = 2
# 训练函数
def train(model_engine, train_dataloader, optimizer, loss_fn, device, epochs):
model_engine.train()
#model_engine.to(device)
for epoch in range(epochs):
# 使用 tqdm 显示进度条
with tqdm(total=len(train_dataloader), desc=f'Epoch {epoch + 1}/{epochs}', unit='batch') as pbar:
optimizer.zero_grad()
for batch_idx, batch in enumerate(train_dataloader):
# 将数据拷贝到 GPU 上
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
input_pixel = batch['input_pixel'].to(device)
labels = batch['labels'].to(device)
image_idx=batch['image_idx'].to(device)
logits = model_engine(input_ids, attention_mask, input_pixel,image_idx)
# 计算损失
#max_logits= logits.max(dim=-1, keepdim=True)[0] # 计算最大值
#stable_logits= logits - max_logits # 减去最大值得到数值稳定的值
loss= loss_fn(logits[:, :-1, :].reshape(-1, logits.shape[-1]), labels[:, 1:].reshape(-1).clone())
# 反向传播
model_engine.backward(loss)
if (batch_idx+1)%accumulation_steps==0:
model_engine.step()
pbar.update(1)
pbar.set_postfix(loss=loss.item()) # 显示当前损失
if (batch_idx+1)%24807==0:
# 如果文件夹存在,则删除并重新创建
if os.path.exists("/root/autodl-tmp/best_model_instruct"):
shutil.rmtree("/root/autodl-tmp/best_model_instruct") # 删除文件夹及其内容
os.makedirs("/root/autodl-tmp/best_model_instruct") # 重新创建文件夹
model_engine.save_checkpoint("/root/autodl-tmp/best_model_instruct")
print(f" model saved at batch {batch_idx+1}")
train(model_engine, train_loader, optimizer, loss_fn, device, epochs=1)
|