Safetensors
File size: 7,722 Bytes
4ab846c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import deepspeed
#deepspeed.initialize(config="./deepspeed_config.json",log_level='DEBUG')
from tqdm import tqdm
import shutil
os.environ['HF_ENDPOINT']="https://hf-mirror.com"
from qwenva import tokenizer
from qwenva import processor
from qwenva import qwenva
images_file_path='./data/download/llava-v1.5-instruct'

import torch
from torch.utils.data import Dataset, DataLoader
import os
import json
from PIL import Image
import json
with open('/root/autodl-tmp/LLaVA-Instruct-150K/qwenva_mix665k.json', 'r', encoding='utf-8') as f:
    chat_data = json.load(f)
import torch
image_token=tokenizer.encode('<image>')[0]
pad_token=tokenizer.pad_token_id
image_token=tokenizer.encode('<image>')[0]
pad_token=tokenizer.pad_token_id
def process_data(sample,max_len=8012):
    conversations=sample['conversations']
    labels=[]
    input_ids=[]
    flag=0
    messages=[]
    input_ids=[]
    try:
        for index,item in enumerate(conversations):
            if item['from']=='human':
                old_input_ids=input_ids
                messages.append({'role':'user','content':item['value']})
                input_ids=tokenizer.apply_chat_template(
                messages,
                add_generation_prompt=True
            )
                #input_ids+=input_token[]
                labels+=[-100]*(len(input_ids)-len(old_input_ids))
                if  index==flag:
                        if image_token in input_ids:
                             image_index=input_ids.index(image_token)
                             labels[image_index]=image_token
                        else:
                             image_index=-100
            elif item['from']=='gpt':
                old_input_ids=input_ids
                messages.append({'role':'assistant','content':item['value']})
                input_ids=tokenizer.apply_chat_template(
               messages
            )
                labels+=input_ids[len(old_input_ids):]
    except:
        print("error in process_data_1")
        exit()
    #填充或者截断,使得长度相同
    try:
        if len(input_ids)>max_len:
            input_ids=input_ids[:max_len]
            labels=labels[:max_len]
            attention_mask=[1]*len(input_ids)
        else:
            attention_mask=[1]*len(input_ids)+[0]*(max_len-len(input_ids))
            input_ids+=[pad_token]*(max_len-len(input_ids))
            labels+=[-100]*(max_len-len(labels))  
    except:
        print("error in process_data_2")
        exit()
    #转化为张量
    try:
        input_ids=torch.tensor(input_ids)
        attention_mask=torch.tensor(attention_mask)
        labels=torch.tensor(labels)
        image_index=torch.tensor(image_index)
    except:
        print("error in tensor")
        exit()
    return {
        'input_ids':input_ids,
        'attention_mask':attention_mask,
        'labels':labels,
        'image_idx':image_index
    }

         
import os
import torch
from torch.utils.data import Dataset
from PIL import Image
class MyDataset(Dataset):
    def __init__(self, images_file_path,data,max_len=1024):
        self.max_len=max_len
        self.images_file_path = images_file_path
        self.data = data
        self.max_len=max_len
    def __len__(self):
        return len(self.data)
    def __getitem__(self, index):
        output_=process_data(self.data[index],max_len=self.max_len)
        if output_['image_idx']!=-100:
             img_path=os.path.join(self.images_file_path,self.data[index]['image'])
             img=Image.open(img_path)
             input_pixel= processor(images=img, return_tensors="pt")
             output_['input_pixel']=input_pixel['pixel_values'].squeeze()
        else:
             output_['input_pixel']=torch.zeros(3,224,224).to(device=output_['input_ids'].device,dtype=output_['input_ids'].dtype)
        return output_
        

        
dataset=MyDataset(images_file_path,chat_data,max_len=2048)
train_loader=DataLoader(dataset,batch_size=16,shuffle=True)
import argparse
model_engine,optimizer,_,_=deepspeed.initialize(
    model=qwenva,
    args=argparse.Namespace(),
    model_parameters=qwenva.parameters(),
    config_params="./deepspeed_config.json"
)
#checkpoint_path = "./best_model_2"
#model_engine.load_checkpoint(checkpoint_path)
#保存编译模型权重
#torch.save(model_engine.module.state_dict(), "./compiled_model.pth")
for name, param in model_engine.module._orig_mod.text_embedding.named_parameters():
            param.requires_grad = True
            #print("embedding权重梯度打开:",name)
#for name, param in model_engine.module._orig_mod.align_layer.named_parameters():
            #param.requires_grad = True
            #print("align_layer权重梯度打开",name)

for name,param in model_engine.module._orig_mod.lm_head.named_parameters():
            param.requires_grad = True
            #print("lm_head权重梯度打开",name)

for  name,param in model_engine.module._orig_mod.transformer.named_parameters():
            param.requires_grad = True
            #print("transformer权重梯度打开",name)
for name,param in model_engine.module._orig_mod.named_parameters():
     if param.requires_grad:
        print(f"Layer: {name}, Requires Grad: {param.requires_grad}")
     

#optimizer = optim.Adam(model.parameters(), lr=0.001)
import torch.nn as nn
loss_fn = nn.CrossEntropyLoss()
#eps = 1e-8
accumulation_steps = 1
# 训练函数
def train(model_engine, train_dataloader, loss_fn, device, epochs):
    model_engine.train()
    #model_engine.to(device)
    for epoch in range(epochs):
        # 使用 tqdm 显示进度条
        with tqdm(total=len(train_dataloader), desc=f'Epoch {epoch + 1}/{epochs}', unit='batch') as pbar:
            #optimizer.zero_grad()
            try:
                for batch_idx, batch in enumerate(train_dataloader):
                    # 将数据拷贝到 GPU 上
                    input_ids = batch['input_ids'].to(device)
                    attention_mask = batch['attention_mask'].to(device)
                    input_pixel = batch['input_pixel'].to(device)
                    labels = batch['labels'].to(device)
                    image_idx=batch['image_idx'].to(device)
                    logits = model_engine(input_ids, attention_mask, input_pixel,image_idx)
                    # 计算损失
                    #max_logits= logits.max(dim=-1, keepdim=True)[0]  # 计算最大值
                    #stable_logits= logits - max_logits  # 减去最大值得到数值稳定的值
                    loss= loss_fn(logits[:, :-1, :].reshape(-1, logits.shape[-1]), labels[:, 1:].reshape(-1).clone())
                    model_engine.backward(loss)
                    if (batch_idx+1)%accumulation_steps==0:
                        model_engine.step()
                    pbar.update(1)
                    pbar.set_postfix(loss=loss.item())  # 显示当前损失
                    if (batch_idx+1)%4100==0:
                        # 如果文件夹存在,则删除并重新创建
                        if os.path.exists("./best_model_2"):
                            shutil.rmtree("./best_model_2")  # 删除文件夹及其内容
                            os.makedirs("./best_model_2")  # 重新创建文件夹
                        model_engine.save_checkpoint("./best_model_2")
                        torch.save(model_engine.module.state_dict(), "./compiled_model_3.pth")
                        print(f" model saved at batch {batch_idx+1}")
            except Exception as e:
                print(f"error in train {e}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")           
train(model_engine, train_loader,  loss_fn, device, epochs=2)