Safetensors
File size: 20,186 Bytes
d3fa7ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
""" 

视觉编码器



"""

#视觉编码器
from transformers import CLIPModel
from transformers import CLIPConfig
vision_config=CLIPConfig.from_pretrained("openai/clip-vit-base-patch32")
clip_model = CLIPModel._from_config(vision_config)
vision_model=clip_model.vision_model
vision_projection=clip_model.visual_projection


#自实现qwen2.5-0.5B

""" 

语言模型



"""
import  torch 
import  torch.nn as nn 
#from torch.nn.attention import SDPBackend, sdpa_kernel
#所有decoder层共用一个Qwen2RotaryEmbedding,减少模型体积
#llama系的RoPE实现
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)
    
class  Qwen2RotaryEmbedding(nn.Module):
    def __init__(self, head_dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()
        self.dim = head_dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            # seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)

        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, q,k,use_cache=False):
        seq_len = k.size(2)
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=q.device, dtype=q.dtype)
        cos_pos=self.cos_cached[:seq_len].to(dtype=q.dtype).unsqueeze(0).unsqueeze(0)
        sin_pos=self.sin_cached[:seq_len].to(dtype=q.dtype).unsqueeze(0).unsqueeze(0)
        #print(cos_pos.size())
        if use_cache:   
            q_embed=q*cos_pos[:,:,-1,:].unsqueeze(1)+rotate_half(q)*sin_pos[:,:,-1,:].unsqueeze(1)   
        else:
            q_embed=q*cos_pos+rotate_half(q)*sin_pos
        k_embed=k*cos_pos+rotate_half(k)*sin_pos
        #print(q_embed.size())
        #print(k_embed.size())
        return q_embed,k_embed
""" 

分组注意力层

"""
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """

    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,

    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)

    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    
    if n_rep == 1:
        return hidden_states  # 如果 n_rep 为 1,则无需重复,直接返回

    # 在 dim=2(即 seqlen 维度之间插入一个新维度),并扩展到 (batch, num_key_value_heads, n_rep, slen, head_dim)
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    
    # 将其形状调整为 (batch, num_key_value_heads * n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)

import math
class Qwen2SdpaAttention(nn.Module):
    def __init__(self,hidden_size,num_attention_heads,num_kv_heads):
        super(Qwen2SdpaAttention,self).__init__()
        self.hidden_size=hidden_size
        self.num_attention_heads=num_attention_heads
        self.attention_head_size=hidden_size//num_attention_heads
        self.num_kv_heads=num_kv_heads
        self.id=id
        self.q_proj=nn.Linear(hidden_size,hidden_size,bias=True)
        self.k_proj=nn.Linear(hidden_size,hidden_size//(num_attention_heads//num_kv_heads),bias=True)
        self.v_proj=nn.Linear(hidden_size,hidden_size//(num_attention_heads//num_kv_heads),bias=True)
        self.o_proj=nn.Linear(hidden_size,hidden_size,bias=False)
        self.rotary_emb=nn.Identity()
        #self.rotary_emb=Qwen2RotaryEmbedding(head_dim=self.attention_head_size,max_position_embeddings=max_position_embeddings,dtype=dtype)
    def forward(self,input_ids,attention_mask,position_embedding,use_cache=False,past_kv=None,id=None):
        """ 

        如果启用kv缓存,输入的是一个单词的embedding,形状为[batch_size,1,hidden_size]

        q的形状是[batch_size,1,hidden_size]

        k的形状为[batch_size,seq_len,hidden_size//(num_attention_heads//num_kv_heads)]

        v的形状为[batch_size,seq_len,hidden_size//(num_attention_heads//num_kv_heads)]

        考虑到预启动阶段。

        """
        batch_size,seq_len,_=input_ids.size()
        q=self.q_proj(input_ids)
        k=self.k_proj(input_ids)
        v=self.v_proj(input_ids)
        if use_cache:
            if id not in past_kv.keys():
                past_kv[id]=k,v
                flag=True
            else:
                k_cache,v_cache=past_kv[id]
                k=torch.cat((k_cache,k),dim=1)
                v=torch.cat((v_cache,v),dim=1)
                past_kv[id]=(k,v)
                flag=False
        #转化成多头 permute是根据当前填入位置选择索引
        q=q.view(batch_size,-1,self.num_attention_heads,self.attention_head_size).permute(0,2,1,3)
        #print(q.size())
        k=k.view(batch_size,-1,self.num_kv_heads,self.attention_head_size).permute(0,2,1,3)
        v=v.view(batch_size,-1,self.num_kv_heads, self.attention_head_size).permute(0, 2, 1, 3)
        #旋转位置编码
        if position_embedding is not None:
            q,k=position_embedding(q,k,use_cache=use_cache)
        else:
            q,k=self.rotary_emb(q,k,use_cache=use_cache)
        #计算分组注意力层
        k=repeat_kv(k,self.num_attention_heads//self.num_kv_heads)
        v=repeat_kv(v,self.num_attention_heads//self.num_kv_heads)
        #print(k.size())
        #print(v.size())
        #casual_mask=torch.tril(torch.ones(1,1,seq_len,seq_len)).to(input_ids.device)
        #attention_mask=attention_mask.unsqueeze(1).unsqueeze(-1)
        #att_mask=attention_mask*casual_mask
        #print(q.dtype)
        #print(k.dtype)
        #print(v.dtype)
        #with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
        attention_logits=F.scaled_dot_product_attention(q, k, v, is_causal=flag)

        attention_logits=attention_logits.permute(0,2,1,3).contiguous().view(batch_size,seq_len,self.hidden_size)
        attention_output=self.o_proj(attention_logits)
        return attention_output

#激活函数
import torch.nn.functional as F
class SiLU(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return F.silu(input, inplace=False)
    
#前馈层
import torch
import torch.nn as nn
import torch.nn.functional as F
class Qwen2MLP(nn.Module):
    def __init__(self,input_dim,expand_dim):
        super(Qwen2MLP,self).__init__()
        self.gate_proj=nn.Linear(input_dim,expand_dim,bias=False)
        self.up_proj=nn.Linear(input_dim,expand_dim,bias=False)
        self.down_proj=nn.Linear(expand_dim,input_dim,bias=False)
        self.act_fn=SiLU()
    def forward(self,x):
       return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

#qwenRMSNorm
class Qwen2RMSNorm(nn.Module):
    def __init__(self,hidden_size,eps=1e-6):
        super().__init__()
        self.weight=nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon=eps
    def forward(self,hidden_states):
        old_dtype=hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance=hidden_states.pow(2).mean(-1,keepdim=True)
        hidden_states=hidden_states*torch.rsqrt(variance+self.variance_epsilon)

        return self.weight*hidden_states.to(old_dtype)    

#decoder层
class Qwen2DecoderLayer(nn.Module):
    def __init__(self,hidden_size,num_attention_heads,num_kv_heads,expand_dim):
        super(Qwen2DecoderLayer, self).__init__()
        self.self_attn =Qwen2SdpaAttention(hidden_size=hidden_size,num_attention_heads=num_attention_heads,num_kv_heads=num_kv_heads)
        self.mlp=Qwen2MLP(input_dim=hidden_size,expand_dim=expand_dim)
        self.input_layernorm=Qwen2RMSNorm(hidden_size)
        self.post_attention_layernorm=Qwen2RMSNorm(hidden_size)
    def forward(self,hidden_states,attention_mask,position_embedding,use_cache=False,past_kv=None,id=None):
        residual=hidden_states
        hidden_states=self.input_layernorm(hidden_states)
        output=self.self_attn(hidden_states,attention_mask,position_embedding,use_cache=use_cache,past_kv=past_kv,id=id)
        output_=residual+output
        residual=output_
        output_=self.post_attention_layernorm(output_)
        output_=self.mlp(output_)
        output_=residual+output_
        return output_
#模型主体
class Qwen2Model(nn.Module):
    def __init__(self,vocab_size,hidden_size,num_layers,num_attention_heads,num_kv_heads,max_position_embeddings,expand_dim):
        super().__init__()
        self.embed_tokens=nn.Embedding(vocab_size,hidden_size)
        self.layers=nn.ModuleList(
            [Qwen2DecoderLayer(hidden_size=hidden_size,num_attention_heads=num_attention_heads,num_kv_heads=num_kv_heads,expand_dim=expand_dim)
              for _ in range(num_layers)]
            
        )
        self.norm=Qwen2RMSNorm(hidden_size)
        self.rotary_emb=Qwen2RotaryEmbedding(head_dim=hidden_size//num_attention_heads,max_position_embeddings=max_position_embeddings)
    def forward(self,input_ids,attention_mask,use_cache=False,past_kv=None):
        token_embed=self.embed_tokens(input_ids)
        #with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
        for index,layer in enumerate(self.layers):
                token_embed=layer(token_embed,attention_mask,self.rotary_emb,use_cache=use_cache,past_kv=past_kv,id=index)
        token_embed=self.norm(token_embed)
        return token_embed

#文本预测生成模型
class Qwen2ForCausalLM(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.model=Qwen2Model(vocab_size=config.vocab_size, hidden_size=config.hidden_size, num_layers=config.num_layers, num_attention_heads=config.num_attention_heads,num_kv_heads=config.num_kv_heads,expand_dim=config.expand_dim,max_position_embeddings=config.max_position_embeddings)
        self.lm_head=nn.Linear(config.hidden_size,config.vocab_size,bias=False)
        self.dtype=config.dtype
    def forward(self,input_ids,attention_mask,use_cache=False,past_kv=None):
        if use_cache:
            if past_kv is None:
                past_kv={}
            output=self.model(input_ids=input_ids,attention_mask=attention_mask,use_cache=use_cache,past_kv=past_kv)
            logits=self.lm_head(output)
            return logits,past_kv
        else:
            output=self.model(input_ids=input_ids,attention_mask=attention_mask)
            logits=self.lm_head(output)
            return logits
    
class Qwen2config:
    def __init__(self):
        self.name = "Qwen2.5-0.5B"
        self.vocab_size=151936
        self.hidden_size=896
        self.num_layers=24
        self.num_kv_heads=2
        self.num_attention_heads=14
        self.max_position_embeddings= 32768
        self.expand_dim=4864
        self.dtype=torch.float16


config=Qwen2config()

qwen_model=Qwen2ForCausalLM(config)


#qwenva模型主体实现
#对齐层
class AlignLayer(torch.nn.Module):
    def __init__(self,text1_dim,text2_dim,expand_dim):
        super(AlignLayer, self).__init__()
        self.vision_proj=vision_projection.to(dtype=config.dtype)
        self.expand_proj=torch.nn.Linear(text1_dim,expand_dim)
        self.text_proj=torch.nn.Linear(expand_dim,text2_dim)
        self.activate=torch.nn.SiLU()
    def forward(self,vision_embedding):
        embed=self.vision_proj(vision_embedding)
        embed=self.expand_proj(embed)
        embed=self.activate(embed)
        embed=self.text_proj(embed)
        return embed
text_model=qwen_model
rotary_emb=text_model.model.rotary_emb
text_embedding=text_model.model.embed_tokens
transformer=text_model.model.layers
lm_head=text_model.lm_head
from transformers import AutoTokenizer
model_name="Qwen/Qwen2.5-0.5B"
tokenizer=AutoTokenizer.from_pretrained(model_name)
tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
from huggingface_hub import PyTorchModelHubMixin
class Qwenva(torch.nn.Module,PyTorchModelHubMixin):
    def __init__(self,text1_dim,text2_dim,expand_dim,dtype=config.dtype):
        super(Qwenva, self).__init__()
        self.vision_encoder=vision_model.to(dtype=config.dtype)
        self.text_embedding=text_embedding
        self.align_layer=AlignLayer(text1_dim,text2_dim,expand_dim).to(dtype)
         # 确保 align_layer 的参数梯度可用
        self.transformer=transformer
        self.rotary_emb=rotary_emb
        #for param in self.rotary_emb.parameters():
            #param.requires_grad = False
        self.lm_head=lm_head
        self.tokenizer=tokenizer    
    def forward(self,input_ids,attention_mask,pixel_values=None,image_idx=None,use_cache=True,past_kv=None):
        #print(align_embedding.shape)
        if  past_kv is None and pixel_values is not None:
            token_embedding=self.text_embedding(input_ids)
            batch_size=input_ids.shape[0]
            vision_embedding=self.vision_encoder(pixel_values)[1]
            #print(vision_embedding.shape,attention_mask.shape)
            align_embedding=self.align_layer(vision_embedding)
            #print(align_embedding.shape)
            #print(vision_embedding.shape,attention_mask.shape)
            align_embedding=self.align_layer(vision_embedding)
            mix_embedding=token_embedding.clone()
            #print(mix_embedding.shape)
            #print(align_embedding.shape)
            #print(image_idx.shape)
            #生成有效的嵌入位置坐标,image_idx的形状为[batch_size,1]
            valid_indices = image_idx.ne(-100)
            #print(valid_indices.squeeze())
            valid_positions = torch.arange(batch_size).to(input_ids.device)
            #print(valid_positions)
            valid_positions = valid_positions[valid_indices.squeeze()].squeeze()
            #print(valid_positions)
            valid_image_idx =image_idx[valid_positions]
            #print(valid_image_idx)
            mix_embedding[valid_positions,valid_image_idx] = align_embedding[valid_positions]
            past_kv={}
        else:
            mix_embedding=self.text_embedding(input_ids)
        for index,layer in enumerate(self.transformer):
            mix_embedding=layer(mix_embedding,attention_mask,position_embedding=self.rotary_emb,use_cache=use_cache,past_kv=past_kv,id=index)
        #print(mix_embedding.shape)
        logits=self.lm_head(mix_embedding)
        if use_cache:
            return logits,past_kv
        else:
            return logits
    def generate(self,input_ids,attention_mask,pixel_values=None,image_idx=None,temperature=1,top_k=2,repetition_penalty=1.0,max_length=300):
        import math
        device=input_ids.device
        #system_user_len=input_ids.shape[1]
        token_eos = torch.tensor(tokenizer.encode('<|im_end|>')).to(device) # 终止符,遇到该字符就结束推理
        out_token = None
        #start_token=input_ids
        temperature=temperature
        top_k=top_k
        repetition_penalty =repetition_penalty  # 重复惩罚
        import torch.nn.functional as F
        past_kv=None
        with torch.no_grad():
            while out_token != token_eos and  len(input_ids[0,:])<max_length:
                #print(input_ids.shape)
                # #print(attention_mask.shape)
                if past_kv is None:
                    logits,past_kv=self.forward(input_ids,attention_mask,pixel_values,image_idx,use_cache=True,past_kv=past_kv)
                else:
                    logits,past_kv=self.forward(input_ids[:,-1].unsqueeze(0),attention_mask[:,-1].unsqueeze(0),pixel_values,image_idx,use_cache=True,past_kv=past_kv)
                # 应用重复惩罚
                if len(input_ids[0,:]) > 1:
                    for i  in input_ids[0]:
                        logits[0,-1,i] /= repetition_penalty
                #top_k采样
                top_k_logits,top_k_indices=torch.topk(logits[0,-1,:],k=top_k)
                out_token=top_k_indices[torch.multinomial(F.softmax(top_k_logits/temperature,dim=-1),num_samples=1)].unsqueeze(0)
                #最大采样
                #out_token=torch.argmax(logits[0,-1,:]).unsqueeze(0).unsqueeze(0)
                #start_token=out_token
                input_ids =torch.cat([input_ids ,out_token], dim=1) # 每次都把之前的所有token与推理得到的新token拼接起来作为下次的输入
                attention_mask = torch.cat([attention_mask,torch.ones(1,1).to(device)], dim=1) # 注意力掩码也要跟着变化
                #text = self.tokenizer.decode(input_ids[0,:])
        return input_ids



#processor实现,负责与处理数据
from transformers import CLIPProcessor, AutoTokenizer
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
model_name="Qwen/Qwen2.5-0.5B"
tokenizer=AutoTokenizer.from_pretrained(model_name)
tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
import torch
from huggingface_hub import TextGenerationOutputToken
from transformers import ProcessorMixin
class Proccessor(ProcessorMixin):
    feature_extractor_class: str = "CLIPProcessor"
    tokenizer_class: str = "Qwen2TokenizerFast"
    def __init__(self,feature_extractor,tokenizer):
        super().__init__(feature_extractor=feature_extractor,tokenizer=tokenizer)
        self.tokenizer=tokenizer
        self.feature_extractor=feature_extractor
        self.image_token=self.tokenizer.encode('<image>')[0]
    def __call__(self,input_data,input_image=None,device="cuda"):
        if isinstance(input_data,str):
            input_=self.tokenizer.apply_chat_template(
            [{'role':'user','content':'<image>\n{}'.format(input_data)}
     ],
    add_generation_prompt=True,)
        elif isinstance(input_data,list):
            input_=self.tokenizer.apply_chat_template(
                input_data,
                add_generation_prompt=True,
            )
        input_ids=torch.tensor(input_).unsqueeze(0).to(device)
        attention_mask=torch.ones(1,len(input_ids[0])).to(device)
        img_idx=input_.index(self.image_token)
        img_idx=torch.tensor(img_idx).unsqueeze(0).to(device)
        if input_image is not None:
            inputs = self.feature_extractor(images=input_image, return_tensors="pt")
            pixel_values=inputs['pixel_values'].to('cuda')
            return {
            "input_ids":input_ids,
            "attention_mask":attention_mask,
            "pixel_values":pixel_values,
            "image_idx":img_idx
        }
        else:
            return {
            "input_ids":input_ids,
            "attention_mask":attention_mask}
processor=Proccessor(processor,tokenizer)    
model=Qwenva(512,896,4096,dtype=config.dtype)
model.load_state_dict(torch.load("./qwenva.pth",weights_only=True))
model.eval()