File size: 20,186 Bytes
d3fa7ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
"""
视觉编码器
"""
#视觉编码器
from transformers import CLIPModel
from transformers import CLIPConfig
vision_config=CLIPConfig.from_pretrained("openai/clip-vit-base-patch32")
clip_model = CLIPModel._from_config(vision_config)
vision_model=clip_model.vision_model
vision_projection=clip_model.visual_projection
#自实现qwen2.5-0.5B
"""
语言模型
"""
import torch
import torch.nn as nn
#from torch.nn.attention import SDPBackend, sdpa_kernel
#所有decoder层共用一个Qwen2RotaryEmbedding,减少模型体积
#llama系的RoPE实现
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
class Qwen2RotaryEmbedding(nn.Module):
def __init__(self, head_dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = head_dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
# seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, q,k,use_cache=False):
seq_len = k.size(2)
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=q.device, dtype=q.dtype)
cos_pos=self.cos_cached[:seq_len].to(dtype=q.dtype).unsqueeze(0).unsqueeze(0)
sin_pos=self.sin_cached[:seq_len].to(dtype=q.dtype).unsqueeze(0).unsqueeze(0)
#print(cos_pos.size())
if use_cache:
q_embed=q*cos_pos[:,:,-1,:].unsqueeze(1)+rotate_half(q)*sin_pos[:,:,-1,:].unsqueeze(1)
else:
q_embed=q*cos_pos+rotate_half(q)*sin_pos
k_embed=k*cos_pos+rotate_half(k)*sin_pos
#print(q_embed.size())
#print(k_embed.size())
return q_embed,k_embed
"""
分组注意力层
"""
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states # 如果 n_rep 为 1,则无需重复,直接返回
# 在 dim=2(即 seqlen 维度之间插入一个新维度),并扩展到 (batch, num_key_value_heads, n_rep, slen, head_dim)
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
# 将其形状调整为 (batch, num_key_value_heads * n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
import math
class Qwen2SdpaAttention(nn.Module):
def __init__(self,hidden_size,num_attention_heads,num_kv_heads):
super(Qwen2SdpaAttention,self).__init__()
self.hidden_size=hidden_size
self.num_attention_heads=num_attention_heads
self.attention_head_size=hidden_size//num_attention_heads
self.num_kv_heads=num_kv_heads
self.id=id
self.q_proj=nn.Linear(hidden_size,hidden_size,bias=True)
self.k_proj=nn.Linear(hidden_size,hidden_size//(num_attention_heads//num_kv_heads),bias=True)
self.v_proj=nn.Linear(hidden_size,hidden_size//(num_attention_heads//num_kv_heads),bias=True)
self.o_proj=nn.Linear(hidden_size,hidden_size,bias=False)
self.rotary_emb=nn.Identity()
#self.rotary_emb=Qwen2RotaryEmbedding(head_dim=self.attention_head_size,max_position_embeddings=max_position_embeddings,dtype=dtype)
def forward(self,input_ids,attention_mask,position_embedding,use_cache=False,past_kv=None,id=None):
"""
如果启用kv缓存,输入的是一个单词的embedding,形状为[batch_size,1,hidden_size]
q的形状是[batch_size,1,hidden_size]
k的形状为[batch_size,seq_len,hidden_size//(num_attention_heads//num_kv_heads)]
v的形状为[batch_size,seq_len,hidden_size//(num_attention_heads//num_kv_heads)]
考虑到预启动阶段。
"""
batch_size,seq_len,_=input_ids.size()
q=self.q_proj(input_ids)
k=self.k_proj(input_ids)
v=self.v_proj(input_ids)
if use_cache:
if id not in past_kv.keys():
past_kv[id]=k,v
flag=True
else:
k_cache,v_cache=past_kv[id]
k=torch.cat((k_cache,k),dim=1)
v=torch.cat((v_cache,v),dim=1)
past_kv[id]=(k,v)
flag=False
#转化成多头 permute是根据当前填入位置选择索引
q=q.view(batch_size,-1,self.num_attention_heads,self.attention_head_size).permute(0,2,1,3)
#print(q.size())
k=k.view(batch_size,-1,self.num_kv_heads,self.attention_head_size).permute(0,2,1,3)
v=v.view(batch_size,-1,self.num_kv_heads, self.attention_head_size).permute(0, 2, 1, 3)
#旋转位置编码
if position_embedding is not None:
q,k=position_embedding(q,k,use_cache=use_cache)
else:
q,k=self.rotary_emb(q,k,use_cache=use_cache)
#计算分组注意力层
k=repeat_kv(k,self.num_attention_heads//self.num_kv_heads)
v=repeat_kv(v,self.num_attention_heads//self.num_kv_heads)
#print(k.size())
#print(v.size())
#casual_mask=torch.tril(torch.ones(1,1,seq_len,seq_len)).to(input_ids.device)
#attention_mask=attention_mask.unsqueeze(1).unsqueeze(-1)
#att_mask=attention_mask*casual_mask
#print(q.dtype)
#print(k.dtype)
#print(v.dtype)
#with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
attention_logits=F.scaled_dot_product_attention(q, k, v, is_causal=flag)
attention_logits=attention_logits.permute(0,2,1,3).contiguous().view(batch_size,seq_len,self.hidden_size)
attention_output=self.o_proj(attention_logits)
return attention_output
#激活函数
import torch.nn.functional as F
class SiLU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
return F.silu(input, inplace=False)
#前馈层
import torch
import torch.nn as nn
import torch.nn.functional as F
class Qwen2MLP(nn.Module):
def __init__(self,input_dim,expand_dim):
super(Qwen2MLP,self).__init__()
self.gate_proj=nn.Linear(input_dim,expand_dim,bias=False)
self.up_proj=nn.Linear(input_dim,expand_dim,bias=False)
self.down_proj=nn.Linear(expand_dim,input_dim,bias=False)
self.act_fn=SiLU()
def forward(self,x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
#qwenRMSNorm
class Qwen2RMSNorm(nn.Module):
def __init__(self,hidden_size,eps=1e-6):
super().__init__()
self.weight=nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon=eps
def forward(self,hidden_states):
old_dtype=hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance=hidden_states.pow(2).mean(-1,keepdim=True)
hidden_states=hidden_states*torch.rsqrt(variance+self.variance_epsilon)
return self.weight*hidden_states.to(old_dtype)
#decoder层
class Qwen2DecoderLayer(nn.Module):
def __init__(self,hidden_size,num_attention_heads,num_kv_heads,expand_dim):
super(Qwen2DecoderLayer, self).__init__()
self.self_attn =Qwen2SdpaAttention(hidden_size=hidden_size,num_attention_heads=num_attention_heads,num_kv_heads=num_kv_heads)
self.mlp=Qwen2MLP(input_dim=hidden_size,expand_dim=expand_dim)
self.input_layernorm=Qwen2RMSNorm(hidden_size)
self.post_attention_layernorm=Qwen2RMSNorm(hidden_size)
def forward(self,hidden_states,attention_mask,position_embedding,use_cache=False,past_kv=None,id=None):
residual=hidden_states
hidden_states=self.input_layernorm(hidden_states)
output=self.self_attn(hidden_states,attention_mask,position_embedding,use_cache=use_cache,past_kv=past_kv,id=id)
output_=residual+output
residual=output_
output_=self.post_attention_layernorm(output_)
output_=self.mlp(output_)
output_=residual+output_
return output_
#模型主体
class Qwen2Model(nn.Module):
def __init__(self,vocab_size,hidden_size,num_layers,num_attention_heads,num_kv_heads,max_position_embeddings,expand_dim):
super().__init__()
self.embed_tokens=nn.Embedding(vocab_size,hidden_size)
self.layers=nn.ModuleList(
[Qwen2DecoderLayer(hidden_size=hidden_size,num_attention_heads=num_attention_heads,num_kv_heads=num_kv_heads,expand_dim=expand_dim)
for _ in range(num_layers)]
)
self.norm=Qwen2RMSNorm(hidden_size)
self.rotary_emb=Qwen2RotaryEmbedding(head_dim=hidden_size//num_attention_heads,max_position_embeddings=max_position_embeddings)
def forward(self,input_ids,attention_mask,use_cache=False,past_kv=None):
token_embed=self.embed_tokens(input_ids)
#with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
for index,layer in enumerate(self.layers):
token_embed=layer(token_embed,attention_mask,self.rotary_emb,use_cache=use_cache,past_kv=past_kv,id=index)
token_embed=self.norm(token_embed)
return token_embed
#文本预测生成模型
class Qwen2ForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.model=Qwen2Model(vocab_size=config.vocab_size, hidden_size=config.hidden_size, num_layers=config.num_layers, num_attention_heads=config.num_attention_heads,num_kv_heads=config.num_kv_heads,expand_dim=config.expand_dim,max_position_embeddings=config.max_position_embeddings)
self.lm_head=nn.Linear(config.hidden_size,config.vocab_size,bias=False)
self.dtype=config.dtype
def forward(self,input_ids,attention_mask,use_cache=False,past_kv=None):
if use_cache:
if past_kv is None:
past_kv={}
output=self.model(input_ids=input_ids,attention_mask=attention_mask,use_cache=use_cache,past_kv=past_kv)
logits=self.lm_head(output)
return logits,past_kv
else:
output=self.model(input_ids=input_ids,attention_mask=attention_mask)
logits=self.lm_head(output)
return logits
class Qwen2config:
def __init__(self):
self.name = "Qwen2.5-0.5B"
self.vocab_size=151936
self.hidden_size=896
self.num_layers=24
self.num_kv_heads=2
self.num_attention_heads=14
self.max_position_embeddings= 32768
self.expand_dim=4864
self.dtype=torch.float16
config=Qwen2config()
qwen_model=Qwen2ForCausalLM(config)
#qwenva模型主体实现
#对齐层
class AlignLayer(torch.nn.Module):
def __init__(self,text1_dim,text2_dim,expand_dim):
super(AlignLayer, self).__init__()
self.vision_proj=vision_projection.to(dtype=config.dtype)
self.expand_proj=torch.nn.Linear(text1_dim,expand_dim)
self.text_proj=torch.nn.Linear(expand_dim,text2_dim)
self.activate=torch.nn.SiLU()
def forward(self,vision_embedding):
embed=self.vision_proj(vision_embedding)
embed=self.expand_proj(embed)
embed=self.activate(embed)
embed=self.text_proj(embed)
return embed
text_model=qwen_model
rotary_emb=text_model.model.rotary_emb
text_embedding=text_model.model.embed_tokens
transformer=text_model.model.layers
lm_head=text_model.lm_head
from transformers import AutoTokenizer
model_name="Qwen/Qwen2.5-0.5B"
tokenizer=AutoTokenizer.from_pretrained(model_name)
tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
from huggingface_hub import PyTorchModelHubMixin
class Qwenva(torch.nn.Module,PyTorchModelHubMixin):
def __init__(self,text1_dim,text2_dim,expand_dim,dtype=config.dtype):
super(Qwenva, self).__init__()
self.vision_encoder=vision_model.to(dtype=config.dtype)
self.text_embedding=text_embedding
self.align_layer=AlignLayer(text1_dim,text2_dim,expand_dim).to(dtype)
# 确保 align_layer 的参数梯度可用
self.transformer=transformer
self.rotary_emb=rotary_emb
#for param in self.rotary_emb.parameters():
#param.requires_grad = False
self.lm_head=lm_head
self.tokenizer=tokenizer
def forward(self,input_ids,attention_mask,pixel_values=None,image_idx=None,use_cache=True,past_kv=None):
#print(align_embedding.shape)
if past_kv is None and pixel_values is not None:
token_embedding=self.text_embedding(input_ids)
batch_size=input_ids.shape[0]
vision_embedding=self.vision_encoder(pixel_values)[1]
#print(vision_embedding.shape,attention_mask.shape)
align_embedding=self.align_layer(vision_embedding)
#print(align_embedding.shape)
#print(vision_embedding.shape,attention_mask.shape)
align_embedding=self.align_layer(vision_embedding)
mix_embedding=token_embedding.clone()
#print(mix_embedding.shape)
#print(align_embedding.shape)
#print(image_idx.shape)
#生成有效的嵌入位置坐标,image_idx的形状为[batch_size,1]
valid_indices = image_idx.ne(-100)
#print(valid_indices.squeeze())
valid_positions = torch.arange(batch_size).to(input_ids.device)
#print(valid_positions)
valid_positions = valid_positions[valid_indices.squeeze()].squeeze()
#print(valid_positions)
valid_image_idx =image_idx[valid_positions]
#print(valid_image_idx)
mix_embedding[valid_positions,valid_image_idx] = align_embedding[valid_positions]
past_kv={}
else:
mix_embedding=self.text_embedding(input_ids)
for index,layer in enumerate(self.transformer):
mix_embedding=layer(mix_embedding,attention_mask,position_embedding=self.rotary_emb,use_cache=use_cache,past_kv=past_kv,id=index)
#print(mix_embedding.shape)
logits=self.lm_head(mix_embedding)
if use_cache:
return logits,past_kv
else:
return logits
def generate(self,input_ids,attention_mask,pixel_values=None,image_idx=None,temperature=1,top_k=2,repetition_penalty=1.0,max_length=300):
import math
device=input_ids.device
#system_user_len=input_ids.shape[1]
token_eos = torch.tensor(tokenizer.encode('<|im_end|>')).to(device) # 终止符,遇到该字符就结束推理
out_token = None
#start_token=input_ids
temperature=temperature
top_k=top_k
repetition_penalty =repetition_penalty # 重复惩罚
import torch.nn.functional as F
past_kv=None
with torch.no_grad():
while out_token != token_eos and len(input_ids[0,:])<max_length:
#print(input_ids.shape)
# #print(attention_mask.shape)
if past_kv is None:
logits,past_kv=self.forward(input_ids,attention_mask,pixel_values,image_idx,use_cache=True,past_kv=past_kv)
else:
logits,past_kv=self.forward(input_ids[:,-1].unsqueeze(0),attention_mask[:,-1].unsqueeze(0),pixel_values,image_idx,use_cache=True,past_kv=past_kv)
# 应用重复惩罚
if len(input_ids[0,:]) > 1:
for i in input_ids[0]:
logits[0,-1,i] /= repetition_penalty
#top_k采样
top_k_logits,top_k_indices=torch.topk(logits[0,-1,:],k=top_k)
out_token=top_k_indices[torch.multinomial(F.softmax(top_k_logits/temperature,dim=-1),num_samples=1)].unsqueeze(0)
#最大采样
#out_token=torch.argmax(logits[0,-1,:]).unsqueeze(0).unsqueeze(0)
#start_token=out_token
input_ids =torch.cat([input_ids ,out_token], dim=1) # 每次都把之前的所有token与推理得到的新token拼接起来作为下次的输入
attention_mask = torch.cat([attention_mask,torch.ones(1,1).to(device)], dim=1) # 注意力掩码也要跟着变化
#text = self.tokenizer.decode(input_ids[0,:])
return input_ids
#processor实现,负责与处理数据
from transformers import CLIPProcessor, AutoTokenizer
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
model_name="Qwen/Qwen2.5-0.5B"
tokenizer=AutoTokenizer.from_pretrained(model_name)
tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
import torch
from huggingface_hub import TextGenerationOutputToken
from transformers import ProcessorMixin
class Proccessor(ProcessorMixin):
feature_extractor_class: str = "CLIPProcessor"
tokenizer_class: str = "Qwen2TokenizerFast"
def __init__(self,feature_extractor,tokenizer):
super().__init__(feature_extractor=feature_extractor,tokenizer=tokenizer)
self.tokenizer=tokenizer
self.feature_extractor=feature_extractor
self.image_token=self.tokenizer.encode('<image>')[0]
def __call__(self,input_data,input_image=None,device="cuda"):
if isinstance(input_data,str):
input_=self.tokenizer.apply_chat_template(
[{'role':'user','content':'<image>\n{}'.format(input_data)}
],
add_generation_prompt=True,)
elif isinstance(input_data,list):
input_=self.tokenizer.apply_chat_template(
input_data,
add_generation_prompt=True,
)
input_ids=torch.tensor(input_).unsqueeze(0).to(device)
attention_mask=torch.ones(1,len(input_ids[0])).to(device)
img_idx=input_.index(self.image_token)
img_idx=torch.tensor(img_idx).unsqueeze(0).to(device)
if input_image is not None:
inputs = self.feature_extractor(images=input_image, return_tensors="pt")
pixel_values=inputs['pixel_values'].to('cuda')
return {
"input_ids":input_ids,
"attention_mask":attention_mask,
"pixel_values":pixel_values,
"image_idx":img_idx
}
else:
return {
"input_ids":input_ids,
"attention_mask":attention_mask}
processor=Proccessor(processor,tokenizer)
model=Qwenva(512,896,4096,dtype=config.dtype)
model.load_state_dict(torch.load("./qwenva.pth",weights_only=True))
model.eval()
|