--- tags: autotrain language: ja widget: - text: "Windows 11搭載PCを買ったら最低限やっておきたいこと" - text: "3月デスクトップOSシェア、Windowsが増加しMacが減少" - text: "raytrek、Core i7-12700HとRTX 3070 Tiを搭載するノートPC" datasets: - jicoc22578/autotrain-data-livedoor_news co2_eq_emissions: 0.019299491458156143 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 722922024 - CO2 Emissions (in grams): 0.019299491458156143 ## Validation Metrics - Loss: 0.19609540700912476 - Accuracy: 0.9457627118644067 - Macro F1: 0.9404319054946133 - Micro F1: 0.9457627118644067 - Weighted F1: 0.9456037443251943 - Macro Precision: 0.9420917371721244 - Micro Precision: 0.9457627118644067 - Weighted Precision: 0.9457910238180336 - Macro Recall: 0.9391783746329772 - Micro Recall: 0.9457627118644067 - Weighted Recall: 0.9457627118644067 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/jicoc22578/autotrain-livedoor_news-722922024 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("jicoc22578/autotrain-livedoor_news-722922024", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("jicoc22578/autotrain-livedoor_news-722922024", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```