jieliu commited on
Commit
2a2de07
·
verified ·
1 Parent(s): 9822b8e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -38
README.md CHANGED
@@ -7,49 +7,46 @@ tags:
7
  - openchat
8
  - RLAIF
9
  - reward model
 
 
 
 
 
10
  ---
11
 
12
  # Storm-7B
13
  - **Developed by**: [Jie Liu](https://jieliu.site/) \\(^{*1,2}\\), [Zhanhui Zhou](https://scholar.google.com/citations?user=SbACfYQAAAAJ&hl=zh-CN) \\(^{*2}\\), [Jiaheng Liu](https://liujiaheng.github.io/) \\(^{2}\\), [Xingyuan Bu](https://scholar.google.com.hk/citations?user=cqYaRhUAAAAJ&hl=zh-CN) \\(^{2}\\), [Chao Yang](https://scholar.google.com/citations?user=5KRbHPMAAAAJ&hl=zh-CN) \\(^{2}\\), [Han-Sen Zhong](https://scholar.google.com.hk/citations?user=X_ZfX8sAAAAJ&hl=zh-CN) \\(^{\dag 2}\\), [Wanli Ouyang](https://wlouyang.github.io/) \\(^{1,2}\\).
14
  - \\(^{1}\\)MMLab, The Chinese University of Hong Kong   \\(^{2}\\)Shanghai AI Laboratory
 
 
 
 
 
 
15
 
16
  ## Introduction
17
 
18
  We released Storm-7B, the first open-source language model comparable to the GPT-4 series on the [AlpacaEval 2.0](https://tatsu-lab.github.io/alpaca_eval/) leaderboard.
19
 
20
- Recent studies show that DPO benefits from iterative training with online preferences labeled by a trained reward model. In this work, we identify a pitfall of vanilla iterative DPO - improved response quality can lead to increased verbosity. To address this, we introduce iterative length-regularized DPO (iLR-DPO) to penalize response length. Our empirical results show that iLR-DPO can enhance a 7B model to perform on par with GPT-4 without increasing verbosity.
21
-
22
- A snapshot of the AlpacaEval 2.0 leaderboard (Single Model, 2024/6/18) is listed below:
23
-
24
- | | **LC Win Rate** | **Win Rate** |
25
- | :----------------------: | :-------------: | :----------: |
26
- | GPT-4 Turbo (04/09) | 55.0% | 46.1% |
27
- | GPT-4 Turbo (04/09) | 55.0% | 46.1% |
28
- | GPT-4 Turbo (04/09) | 55.0% | 46.1% |
29
- | GPT-4 Turbo (04/09) | 55.0% | 46.1% |
30
- | GPT-4 Preview (11/06) | 50.0% | 50.0% |
31
- | **Storm-7B** | 48.9% | 52.5% |
32
- | Nanbeige Plus Chat v0.1 | 44.5% | 56.7% |
33
- | Qwen1.5 110B Chat | 43.9% | 33.8% |
34
- | Aligner 2B+Claude 3 Opus | 41.8% | 34.5% |
35
- | Claude 3 Opus (02/29) | 40.5% | 29.1% |
36
- | GPT-4 | 38.1% | 23.6% |
37
- | openchat-3.5-0106 | 15.4% | 10.1% |
38
-
39
- Please refer to the [leaderboard webpage](https://tatsu-lab.github.io/alpaca_eval/) for up-to-date results.
40
-
41
- We also conducted preliminary evaluations on other benchmarks and observed no significant degradation.
42
-
43
- | | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | Avg. |
44
- | ----------------- | ----- | --------- | ----- | ---------- | ---------- | ----- |
45
- | **Storm-7B** | 67.58 | 80.97 | 62.21 | 57.24 | 80.51 | 69.70 |
46
- | openchat-3.5-0106 | 66.38 | 83.00 | 63.47 | 52.55 | 81.06 | 69.29 |
47
- | internlm2-7b | 58.02 | 81.24 | 65.24 | 48.73 | 83.82 | 67.41 |
48
- | gemma-7B | 61.09 | 82.20 | 64.56 | 44.79 | 79.01 | 66.33 |
49
- | Yi-9B | 61.18 | 78.82 | 70.06 | 42.45 | 77.51 | 66.00 |
50
- | Meta-Llama-3-8B | 59.47 | 82.09 | 66.69 | 43.90 | 77.35 | 65.90 |
51
- | Mistral-7B-v0.1 | 59.98 | 83.31 | 64.16 | 42.15 | 78.37 | 65.59 |
52
- | Qwen-7b | 51.37 | 78.47 | 59.84 | 47.79 | 72.69 | 62.03 |
53
 
54
  ## Uses
55
 
@@ -96,16 +93,25 @@ alpaca_eval evaluate_from_model --model_configs 'Storm-7B'
96
 
97
  ## Limitations
98
 
99
- Storm-7B is a quick demonstration that a language model, fine-tuned with AI feedback, can easily surpass or match state-of-the-art models, as assessed by the same AI feedback. However, this improvement on the automatic leaderboard may not necessarily indicate better alignment with human intentions. Our model therefore represents a critical, preliminary reevaluation of the RLAIF paradigm, questioning how much learning from and being evaluated by AI feedback aligns with actual human preferences.
 
 
100
 
101
  ## Citation
102
 
103
  ```
104
  @misc{liu2024storm,
105
- title = {Storm-7B: An Empirical Study of Iterative Direct Preference Optimization},
106
  url = {},
107
- author = {Jie Liu and Zhanhui Zhou and Chao Yang and Han-Sen Zhong and Wanli Ouyang},
108
- month = {April},
109
  year = {2024}
110
  }
111
- ```
 
 
 
 
 
 
 
 
7
  - openchat
8
  - RLAIF
9
  - reward model
10
+ language:
11
+ - en
12
+ base_model: openchat/openchat-3.5-0106
13
+ datasets:
14
+ - berkeley-nest/Nectar
15
  ---
16
 
17
  # Storm-7B
18
  - **Developed by**: [Jie Liu](https://jieliu.site/) \\(^{*1,2}\\), [Zhanhui Zhou](https://scholar.google.com/citations?user=SbACfYQAAAAJ&hl=zh-CN) \\(^{*2}\\), [Jiaheng Liu](https://liujiaheng.github.io/) \\(^{2}\\), [Xingyuan Bu](https://scholar.google.com.hk/citations?user=cqYaRhUAAAAJ&hl=zh-CN) \\(^{2}\\), [Chao Yang](https://scholar.google.com/citations?user=5KRbHPMAAAAJ&hl=zh-CN) \\(^{2}\\), [Han-Sen Zhong](https://scholar.google.com.hk/citations?user=X_ZfX8sAAAAJ&hl=zh-CN) \\(^{\dag 2}\\), [Wanli Ouyang](https://wlouyang.github.io/) \\(^{1,2}\\).
19
  - \\(^{1}\\)MMLab, The Chinese University of Hong Kong   \\(^{2}\\)Shanghai AI Laboratory
20
+ - Paper: [Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level]()
21
+ - Finetuned from model: [openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106)
22
+ - Dataset: [berkeley-nest/Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar)
23
+ - Reward Model: [Starling-RM-34B](https://huggingface.co/Nexusflow/Starling-RM-34B)
24
+
25
+ Please see our paper for more details.
26
 
27
  ## Introduction
28
 
29
  We released Storm-7B, the first open-source language model comparable to the GPT-4 series on the [AlpacaEval 2.0](https://tatsu-lab.github.io/alpaca_eval/) leaderboard.
30
 
31
+ Recent studies show that DPO benefits from iterative training with online preferences labeled by a trained reward model. In this work, we identify a pitfall of vanilla iterative DPO - improved response quality can lead to increased verbosity. To address this, we introduce iterative length-regularized DPO (iLR-DPO) to penalize response length. Our empirical results show that iLR-DPO can enhance a 7B model to perform on par with GPT-4 **without increasing verbosity**.
32
+
33
+ ## Performance
34
+ Our 7B model achieves a **50.5%** length-controlled win rate against GPT-4 Preview on AlpacaEval 2.0.
35
+ <p align="center">
36
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/639be86b59473c6ae02ef9c4/Tj_a1QntAxkhy2SXbOdmT.png" width="30%">
37
+ </p>
38
+ Our model's LC win rate improves over iterations without significantly changing the response length, indicating better alignment with human values without length bias. The final trained model (iteration 3) achieves a 50.5% LC win rate, making it the first open-source model to surpass the baseline model GPT-4 Preview.
39
+
40
+ In addition to regular decoding, we also test beam search and best-of-n sampling on top of our trained model. Beam search over our trained model shows a 5% improvement over regular decoding, Best-of-n sampling with Starling-RM-34B achieves 61.6% LC Win rate and outperforms GPT-4 Omni.
41
+ <p align="center">
42
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/639be86b59473c6ae02ef9c4/GGa28vaREaVq099MPdqcP.png" width="50%">
43
+ </p>
44
+
45
+ We observe no significant degradation in traditional NLP tasks from the Huggingface Open LLM Leaderboard.
46
+ <p align="center">
47
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/639be86b59473c6ae02ef9c4/8KEm_Ladg7Kqko8mC63SN.png" width="50%">
48
+ </p>
49
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  ## Uses
52
 
 
93
 
94
  ## Limitations
95
 
96
+ Our work has several limitations:
97
+ (1) We focus on aligning with human preferences but only use GPT-4 as a proxy for human judgment to evaluate language models.
98
+ (2) We reduce verbosity with a length penalty, though verbosity and length are not necessarily correlated. Future work could train a specific reward model to directly penalize verbosity, replacing the length margin with a verbosity margin, following the standard [MODPO pipeline](https://github.com/ZHZisZZ/modpo).
99
 
100
  ## Citation
101
 
102
  ```
103
  @misc{liu2024storm,
104
+ title = {Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level},
105
  url = {},
106
+ author = {Liu, Jie and Zhou, Zhanhui and Liu, Jiaheng and Bu, Xingyuan and Yang, Chao and Zhong Han-Sen and Ouyang, Wanli},
107
+ month = {June},
108
  year = {2024}
109
  }
110
+
111
+ @article{zhou2023beyond,
112
+ title={Beyond one-preference-for-all: Multi-objective direct preference optimization},
113
+ author={Zhou, Zhanhui and Liu, Jie and Yang, Chao and Shao, Jing and Liu, Yu and Yue, Xiangyu and Ouyang, Wanli and Qiao, Yu},
114
+ journal={arXiv preprint arXiv:2310.03708},
115
+ year={2023}
116
+ }
117
+ ```