update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
model-index:
|
8 |
+
- name: git-base-pokemon
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# git-base-pokemon
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0429
|
20 |
+
- Wer Score: 1.9591
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 16
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 50
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|
|
54 |
+
| 7.3666 | 1.06 | 50 | 4.4430 | 21.5287 |
|
55 |
+
| 2.1581 | 2.13 | 100 | 0.2911 | 0.9783 |
|
56 |
+
| 0.0896 | 3.19 | 150 | 0.0328 | 0.3665 |
|
57 |
+
| 0.0269 | 4.26 | 200 | 0.0274 | 0.3487 |
|
58 |
+
| 0.0208 | 5.32 | 250 | 0.0284 | 0.4189 |
|
59 |
+
| 0.0168 | 6.38 | 300 | 0.0287 | 1.1673 |
|
60 |
+
| 0.0133 | 7.45 | 350 | 0.0296 | 6.0881 |
|
61 |
+
| 0.0106 | 8.51 | 400 | 0.0306 | 1.7969 |
|
62 |
+
| 0.0076 | 9.57 | 450 | 0.0322 | 7.1852 |
|
63 |
+
| 0.0053 | 10.64 | 500 | 0.0329 | 14.8889 |
|
64 |
+
| 0.0039 | 11.7 | 550 | 0.0338 | 12.2720 |
|
65 |
+
| 0.0027 | 12.77 | 600 | 0.0356 | 5.1533 |
|
66 |
+
| 0.0016 | 13.83 | 650 | 0.0371 | 8.4253 |
|
67 |
+
| 0.001 | 14.89 | 700 | 0.0379 | 6.7344 |
|
68 |
+
| 0.0006 | 15.96 | 750 | 0.0385 | 7.7586 |
|
69 |
+
| 0.0005 | 17.02 | 800 | 0.0392 | 9.0294 |
|
70 |
+
| 0.0004 | 18.09 | 850 | 0.0385 | 7.5083 |
|
71 |
+
| 0.0004 | 19.15 | 900 | 0.0394 | 5.1188 |
|
72 |
+
| 0.0004 | 20.21 | 950 | 0.0397 | 5.0600 |
|
73 |
+
| 0.0004 | 21.28 | 1000 | 0.0399 | 4.4125 |
|
74 |
+
| 0.0003 | 22.34 | 1050 | 0.0405 | 3.7803 |
|
75 |
+
| 0.0003 | 23.4 | 1100 | 0.0406 | 3.3397 |
|
76 |
+
| 0.0003 | 24.47 | 1150 | 0.0408 | 3.3218 |
|
77 |
+
| 0.0003 | 25.53 | 1200 | 0.0411 | 2.8212 |
|
78 |
+
| 0.0003 | 26.6 | 1250 | 0.0411 | 2.7165 |
|
79 |
+
| 0.0003 | 27.66 | 1300 | 0.0414 | 2.7625 |
|
80 |
+
| 0.0003 | 28.72 | 1350 | 0.0416 | 2.4330 |
|
81 |
+
| 0.0003 | 29.79 | 1400 | 0.0416 | 2.2350 |
|
82 |
+
| 0.0003 | 30.85 | 1450 | 0.0419 | 2.1699 |
|
83 |
+
| 0.0003 | 31.91 | 1500 | 0.0421 | 2.0026 |
|
84 |
+
| 0.0003 | 32.98 | 1550 | 0.0420 | 2.1609 |
|
85 |
+
| 0.0003 | 34.04 | 1600 | 0.0421 | 2.0307 |
|
86 |
+
| 0.0003 | 35.11 | 1650 | 0.0422 | 1.9668 |
|
87 |
+
| 0.0003 | 36.17 | 1700 | 0.0423 | 1.9387 |
|
88 |
+
| 0.0003 | 37.23 | 1750 | 0.0425 | 1.9464 |
|
89 |
+
| 0.0003 | 38.3 | 1800 | 0.0427 | 1.8761 |
|
90 |
+
| 0.0003 | 39.36 | 1850 | 0.0427 | 1.8940 |
|
91 |
+
| 0.0003 | 40.43 | 1900 | 0.0428 | 1.9068 |
|
92 |
+
| 0.0003 | 41.49 | 1950 | 0.0428 | 1.8774 |
|
93 |
+
| 0.0003 | 42.55 | 2000 | 0.0429 | 1.8352 |
|
94 |
+
| 0.0002 | 43.62 | 2050 | 0.0428 | 2.0907 |
|
95 |
+
| 0.0002 | 44.68 | 2100 | 0.0429 | 2.0319 |
|
96 |
+
| 0.0002 | 45.74 | 2150 | 0.0429 | 2.0179 |
|
97 |
+
| 0.0002 | 46.81 | 2200 | 0.0429 | 1.9706 |
|
98 |
+
| 0.0002 | 47.87 | 2250 | 0.0429 | 1.9604 |
|
99 |
+
| 0.0002 | 48.94 | 2300 | 0.0429 | 1.9540 |
|
100 |
+
| 0.0002 | 50.0 | 2350 | 0.0429 | 1.9591 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.28.0
|
106 |
+
- Pytorch 2.0.0+cu118
|
107 |
+
- Datasets 2.11.0
|
108 |
+
- Tokenizers 0.13.3
|