dataset: include_answer: true name: train path: jijihuny/economics_qa shuffle: true test_size: null generation: do_sample: false dola_layers: null length_penalty: null max_new_tokens: 50 num_beams: null penalty_alpha: null repetition_penalty: null return_full_text: false top_k: 1 metric: only_inference: false path: jijihuny/ecqa model: attn_implementation: sdpa device_map: auto path: MLP-KTLim/llama-3-Korean-Bllossom-8B system_prompt: "\uB108\uB294 \uC8FC\uC5B4\uC9C4 Context\uC5D0\uC11C Question\uC5D0\ \ \uB300\uD55C Answer\uB97C \uCC3E\uB294 \uCC57\uBD07\uC774\uC57C. Context\uC5D0\ \uC11C Answer\uAC00 \uB420 \uC218 \uC788\uB294 \uBD80\uBD84\uC744 \uCC3E\uC544\ \uC11C \uADF8\uB300\uB85C \uC801\uC5B4\uC918. \uB2E8, Answer\uB294 \uC8FC\uAD00\ \uC2DD\uC774 \uC544\uB2C8\uB77C \uB2E8\uB2F5\uD615\uC73C\uB85C \uC801\uC5B4\uC57C\ \ \uD574." task: text-generation torch_dtype: auto seed: 42 train: args: bf16: true bf16_full_eval: true eval_accumulation_steps: 1 eval_on_start: false eval_steps: 0.05 eval_strategy: steps gradient_accumulation_steps: 1 learning_rate: 0.0001 logging_steps: 1 lr_scheduler_kwargs: gamma: 0.75 num_cycles: 5 max_grad_norm: 1.0 max_seq_length: 2048 num_train_epochs: 1 optim: paged_adamw_8bit output_dir: llama3-qlora-completion-only-cos-decay per_device_eval_batch_size: 32 per_device_train_batch_size: 16 push_to_hub: true report_to: wandb run_name: llama3-qlora-completion-only-cos-decay save_steps: 0.1 torch_compile: true torch_empty_cache_steps: 5 warmup_ratio: 0.03 weight_decay: 0.01 instruction_template: '<|start_header_id|>user<|end_header_id|> ' lora: bias: none lora_alpha: 32 lora_dropout: 0.05 r: 16 target_modules: - up_proj - down_proj - gate_proj - k_proj - q_proj - v_proj - o_proj task_type: CAUSAL_LM quantization: bnb_4bit_compute_dtype: bfloat16 bnb_4bit_quant_type: nf4 bnb_4bit_use_double_quant: true load_in_4bit: true response_template: '<|start_header_id|>assistant<|end_header_id|> ' use_completion_only_data_collator: true