File size: 1,706 Bytes
3c8f72f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d96b04
3c8f72f
 
7d96b04
3c8f72f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---

language: multilingual
tags:
- adaptive-classifier
- text-classification
- continuous-learning
license: apache-2.0
---


# Adaptive Classifier

This model is an instance of an [adaptive-classifier](https://github.com/codelion/adaptive-classifier) that allows for continuous learning and dynamic class addition.

You can install it with `pip install adaptive-classifier`.

## Model Details

- Base Model: BAAI/bge-small-en-v1.5
- Number of Classes: 3
- Total Examples: 3
- Embedding Dimension: 384

## Class Distribution

```

negative: 1 examples (33.3%)

neutral: 1 examples (33.3%)

positive: 1 examples (33.3%)

```

## Usage

```python

from adaptive_classifier import AdaptiveClassifier



# Load the model

classifier = AdaptiveClassifier.from_pretrained("adaptive-classifier/model-name")



# Make predictions

text = "Your text here"

predictions = classifier.predict(text)

print(predictions)  # List of (label, confidence) tuples



# Add new examples

texts = ["Example 1", "Example 2"]

labels = ["class1", "class2"]

classifier.add_examples(texts, labels)

```

## Training Details

- Training Steps: 1
- Examples per Class: See distribution above
- Prototype Memory: Active
- Neural Adaptation: Active

## Limitations

This model:
- Requires at least 3 examples per class
- Has a maximum of 1000 examples per class
- Updates prototypes every 100 examples

## Citation

```bibtex

@software{adaptive_classifier,

  title = {Adaptive Classifier: Dynamic Text Classification with Continuous Learning},

  author = {Sharma, Asankhaya},

  year = {2025},

  publisher = {GitHub},

  url = {https://github.com/codelion/adaptive-classifier}

}

```