File size: 17,607 Bytes
01eda82 b8b8f72 806ad6f b8b8f72 3f4007a 727b2f2 0458432 727b2f2 b8b8f72 4f4251a b8b8f72 25ca911 b8b8f72 25ca911 b8b8f72 25ca911 44077eb 25ca911 b8b8f72 25ca911 44077eb 25ca911 44077eb 25ca911 b8b8f72 01eda82 0458432 b8b8f72 7c6a81b 3f4007a af015b7 b8b8f72 5275be6 ede5490 5275be6 6c8a548 b8b8f72 af015b7 b8b8f72 af015b7 6c8a548 af015b7 a3292d3 ce68525 6c8a548 ce68525 af015b7 6c8a548 af015b7 b8b8f72 af015b7 b8b8f72 ce68525 6c8a548 ce68525 6c8a548 a3292d3 5275be6 ce68525 af015b7 6c8a548 af015b7 5275be6 b8b8f72 5275be6 6c8a548 5275be6 b8b8f72 ef81d78 b8b8f72 6c8a548 ef81d78 6c8a548 ef81d78 6c8a548 ef81d78 b8b8f72 a3292d3 ef81d78 6c8a548 ef81d78 b8b8f72 6c8a548 b8b8f72 6c8a548 44077eb 6c8a548 44077eb b8b8f72 5275be6 3f4007a dbc4a34 6c8a548 9deac5f 6c8a548 44077eb 6c8a548 b8b8f72 3f4007a b8b8f72 0458432 b8b8f72 727b2f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
---
library_name: transformers
license: cc-by-nc-4.0
tags:
- xlm-roberta
- eva02
- clip
- feature-extraction
- sentence-similarity
- retrieval
- multimodal
- multi-modal
- crossmodal
- cross-modal
- mteb
- clip-benchmark
- vidore
- transformers
- sentence-transformers
- onnx
- safetensors
- transformers.js
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
inference: false
base_model:
- jinaai/xlm-roberta-flash-implementation
---
<br><br>
<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>
<p align="center">
<b>The embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>
<p align="center">
<b>Jina CLIP v2: Multilingual Multimodal Embeddings for Texts and Images</b>
</p>
## Quick Start
[Blog](https://jina.ai/news/jina-clip-v2-multilingual-multimodal-embeddings-for-text-and-images) | [Technical Report](https://arxiv.org/abs/2412.08802) | [Azure](https://azuremarketplace.microsoft.com/en-gb/marketplace/apps/jinaai.jina-clip-v2-vm?tab=Overview) | [AWS SageMaker](https://aws.amazon.com/marketplace/pp/prodview-bfbctuqmky676) | [Google Cloud Platform](https://console.cloud.google.com/marketplace/browse?hl=en&inv=1&invt=AbiD-g&q=jina) | [API](https://jina.ai/embeddings)
## Intended Usage & Model Info
`jina-clip-v2` is a **general-purpose multilingual multimodal embedding model for text & images**.
Multimodal embeddings enable searching and understanding data across different modalities through a coherent representation. They serve as the backbone of neural information retrieval and multimodal GenAI applications.
Built upon [`jina-clip-v1`](https://huggingface.co/jinaai/jina-clip-v1) and our recently released [`jina-embeddings-v3`](https://huggingface.co/jinaai/jina-embeddings-v3), `jina-clip-v2` features several significant improvements:
* **Improved Performance**: v2 shows a 3% performance improvement over v1 in both text-image and text-text retrieval tasks. Similar to v1, v2's text encoder can serve as an effective multilingual long-context dense retriever. It performs on par with our frontier model `jina-embeddings-v3` (currently the best multilingual embeddings under 1B parameters on MTEB).
* **Multilingual Support**: Using the same backbone as `jina-embeddings-v3` for the text tower, `jina-clip-v2` supports 89 languages for multilingual-image retrieval, showing up to 4% improvement compared to `nllb-clip-large-siglip` on multilingual image retrieval tasks.
* **Higher Image Resolution**: v2 now supports 512x512 input image resolution, a significant increase from v1's 224x224. This higher resolution enables better processing of detailed images, improved feature extraction, and more accurate recognition of fine-grained visual elements.
* **Matryoshka Representations**: v2 allows users to truncate the output dimensions of both text and image embeddings from 1024 down to 64, reducing storage and processing overhead while maintaining strong performance.
Measuring 0.9B parameters, `jina-clip-v2` combines two powerful encoders:
* the text encoder `Jina-XLM-RoBERTa` (the backbone of `jina-embeddings-v3`) and
* the vision encoder `EVA02-L14` (an efficient vision Transformer developed by BAAI).
| FEATURE | TEXT ENCODER | IMAGE ENCODER |
|-----------------------|-------------------------|------------------|
| Base Model | Jina-XLM-RoBERTa | EVA02-L |
| Parameters | 561M | 304M |
| Input Specification | 8,192 tokens (max) | 512×512 pixels |
| Min Output Dimensions | 64 | 64 |
| Max Output Dimensions | 1,024 | 1,024 |
| Layers | 24 | 24 |
| Attention Mechanism | FlashAttention2 | xFormers |
| Pooling Strategy | Mean pooling | CLS pooling |
| Additional Features | 89 languages supported | Patch size 14x14 |
These encoders are jointly trained to create aligned representations of images and text.
CLIP-like models have established themselves as the backbone for general-purpose multimodal applications. With `jina-clip-v2`, we're taking these capabilities to the next level, breaking down language barriers to deliver more accurate cross-modal understanding and retrieval. We're confident this release delivers a promise in making multimodal search and retrieval both more powerful and more accessible to developers worldwide.
## Training, Data, Parameters
Please refer to our [technical report of jina-clip-v2](https://arxiv.org/abs/2412.08802) for the model and training details.
[technical report of jina-clip-v1](https://arxiv.org/abs/2405.20204)
## Faster Inference: FA2, XFormers and bf16
On a CUDA enabled torch environment, the model comes in `torch.bfloat16`
precision by default. It is highly recommended to install
[FlashAttention](https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features)
and [xFormers](https://github.com/facebookresearch/xformers?tab=readme-ov-file#installing-xformers)
to make use of their efficient attention mechanism implementations.
## Usage
<details>
<summary>via Jina AI <a href="https://jina.ai/embeddings/">Embedding API</a></summary>
```bash
curl https://api.jina.ai/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer [JINA_AI_API_TOKEN]" \
-d @- <<EOFEOF
{
"model": "jina-clip-v2",
"dimensions": 1024,
"task": "retrieval.query",
"normalized": true,
"embedding_type": "float",
"input": [
{
"text": "غروب جميل على الشاطئ"
},
{
"text": "海滩上美丽的日落"
},
{
"text": "A beautiful sunset over the beach"
},
{
"text": "Un beau coucher de soleil sur la plage"
},
{
"text": "Ein wunderschöner Sonnenuntergang am Strand"
},
{
"text": "Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία"
},
{
"text": "समुद्र तट पर एक खूबसूरत सूर्यास्त"
},
{
"text": "Un bellissimo tramonto sulla spiaggia"
},
{
"text": "浜辺に沈む美しい夕日"
},
{
"text": "해변 위로 아름다운 일몰"
},
{
"image": "https://i.ibb.co/nQNGqL0/beach1.jpg"
},
{
"image": "https://i.ibb.co/r5w8hG8/beach2.jpg"
}
]
}
EOFEOF
```
</details>
<details>
<summary>via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a></summary>
```python
# !pip install transformers einops timm pillow
from transformers import AutoModel
# Initialize the model
model = AutoModel.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True)
# Corpus
sentences = [
'غروب جميل على الشاطئ', # Arabic
'海滩上美丽的日落', # Chinese
'Un beau coucher de soleil sur la plage', # French
'Ein wunderschöner Sonnenuntergang am Strand', # German
'Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία', # Greek
'समुद्र तट पर एक खूबसूरत सूर्यास्त', # Hindi
'Un bellissimo tramonto sulla spiaggia', # Italian
'浜辺に沈む美しい夕日', # Japanese
'해변 위로 아름다운 일몰', # Korean
]
# Public image URLs or PIL Images
image_urls = ['https://i.ibb.co/nQNGqL0/beach1.jpg', 'https://i.ibb.co/r5w8hG8/beach2.jpg']
# Choose a matryoshka dimension, set to None to get the full 1024-dim vectors
truncate_dim = 512
# Encode text and images
text_embeddings = model.encode_text(sentences, truncate_dim=truncate_dim)
image_embeddings = model.encode_image(
image_urls, truncate_dim=truncate_dim
) # also accepts PIL.Image.Image, local filenames, dataURI
# Encode query text
query = 'beautiful sunset over the beach' # English
query_embeddings = model.encode_text(
query, task='retrieval.query', truncate_dim=truncate_dim
)
# Text to Image
print('En -> Img: ' + str(query_embeddings @ image_embeddings[0].T))
# Image to Image
print('Img -> Img: ' + str(image_embeddings[0] @ image_embeddings[1].T))
# Text to Text
print('En -> Ar: ' + str(query_embeddings @ text_embeddings[0].T))
print('En -> Zh: ' + str(query_embeddings @ text_embeddings[1].T))
print('En -> Fr: ' + str(query_embeddings @ text_embeddings[2].T))
print('En -> De: ' + str(query_embeddings @ text_embeddings[3].T))
print('En -> Gr: ' + str(query_embeddings @ text_embeddings[4].T))
print('En -> Hi: ' + str(query_embeddings @ text_embeddings[5].T))
print('En -> It: ' + str(query_embeddings @ text_embeddings[6].T))
print('En -> Jp: ' + str(query_embeddings @ text_embeddings[7].T))
print('En -> Ko: ' + str(query_embeddings @ text_embeddings[8].T))
```
</details>
<details>
<summary>via <a href="https://sbert.net/">sentence-transformers</a></summary>
```python
# !pip install sentence-transformers einops timm pillow
from sentence_transformers import SentenceTransformer
# Choose a matryoshka dimension
truncate_dim = 512
# Initialize the model
model = SentenceTransformer(
'jinaai/jina-clip-v2', trust_remote_code=True, truncate_dim=truncate_dim
)
# Corpus
sentences = [
'غروب جميل على الشاطئ', # Arabic
'海滩上美丽的日落', # Chinese
'Un beau coucher de soleil sur la plage', # French
'Ein wunderschöner Sonnenuntergang am Strand', # German
'Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία', # Greek
'समुद्र तट पर एक खूबसूरत सूर्यास्त', # Hindi
'Un bellissimo tramonto sulla spiaggia', # Italian
'浜辺に沈む美しい夕日', # Japanese
'해변 위로 아름다운 일몰', # Korean
]
# Public image URLs or PIL Images
image_urls = ['https://i.ibb.co/nQNGqL0/beach1.jpg', 'https://i.ibb.co/r5w8hG8/beach2.jpg']
# Encode text and images
text_embeddings = model.encode(sentences, normalize_embeddings=True)
image_embeddings = model.encode(
image_urls, normalize_embeddings=True
) # also accepts PIL.Image.Image, local filenames, dataURI
# Encode query text
query = 'beautiful sunset over the beach' # English
query_embeddings = model.encode(
query, prompt_name='retrieval.query', normalize_embeddings=True
)
```
</details>
<details>
<summary>via <a href="https://huggingface.co/docs/transformers.js/en/index">transformers.js</a></summary>
> [!NOTE]
> JinaCLIP was added in Transformers.js v3.1.0, so make sure you're using a compatible version!
> See the [release notes](https://github.com/huggingface/transformers.js/releases/tag/3.1.0) for more information.
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
**Example:** Compute text and/or image embeddings with `jinaai/jina-clip-v2`:
```js
import { AutoModel, AutoProcessor, RawImage, matmul } from "@huggingface/transformers";
// Load processor and model
const model_id = "jinaai/jina-clip-v2";
const processor = await AutoProcessor.from_pretrained(model_id);
const model = await AutoModel.from_pretrained(model_id, { dtype: "q4" /* e.g., "fp16", "q8", or "q4" */ });
// Prepare inputs
const urls = ["https://i.ibb.co/nQNGqL0/beach1.jpg", "https://i.ibb.co/r5w8hG8/beach2.jpg"];
const images = await Promise.all(urls.map(url => RawImage.read(url)));
const sentences = [
"غروب جميل على الشاطئ", // Arabic
"海滩上美丽的日落", // Chinese
"Un beau coucher de soleil sur la plage", // French
"Ein wunderschöner Sonnenuntergang am Strand", // German
"Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία", // Greek
"समुद्र तट पर एक खूबसूरत सूर्यास्त", // Hindi
"Un bellissimo tramonto sulla spiaggia", // Italian
"浜辺に沈む美しい夕日", // Japanese
"해변 위로 아름다운 일몰", // Korean
];
// Encode text and images
const inputs = await processor(sentences, images, { padding: true, truncation: true });
const { l2norm_text_embeddings, l2norm_image_embeddings } = await model(inputs);
// Encode query (text-only)
const query_prefix = "Represent the query for retrieving evidence documents: ";
const query_inputs = await processor(query_prefix + "beautiful sunset over the beach");
const { l2norm_text_embeddings: query_embeddings } = await model(query_inputs);
// Compute text-image similarity scores
const text_to_image_scores = await matmul(query_embeddings, l2norm_image_embeddings.transpose(1, 0));
console.log("text-image similarity scores", text_to_image_scores.tolist()[0]); // [0.29530206322669983, 0.3183615803718567]
// Compute image-image similarity scores
const image_to_image_score = await matmul(l2norm_image_embeddings[0], l2norm_image_embeddings[1]);
console.log("image-image similarity score", image_to_image_score.item()); // 0.9344457387924194
// Compute text-text similarity scores
const text_to_text_scores = await matmul(query_embeddings, l2norm_text_embeddings.transpose(1, 0));
console.log("text-text similarity scores", text_to_text_scores.tolist()[0]); // [0.5566609501838684, 0.7028406858444214, 0.582255482673645, 0.6648036241531372, 0.5462006330490112, 0.6791588068008423, 0.6192430257797241, 0.6258729100227356, 0.6453716158866882]
```
</details>
<details>
<summary>via the <a href="https://onnxruntime.ai/">ONNX Runtime</a></summary>
```python
# !pip install transformers onnxruntime pillow
import onnxruntime as ort
from transformers import AutoImageProcessor, AutoTokenizer
# Load tokenizer and image processor using transformers
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True)
image_processor = AutoImageProcessor.from_pretrained(
'jinaai/jina-clip-v2', trust_remote_code=True
)
# Corpus
sentences = [
'غروب جميل على الشاطئ', # Arabic
'海滩上美丽的日落', # Chinese
'Un beau coucher de soleil sur la plage', # French
'Ein wunderschöner Sonnenuntergang am Strand', # German
'Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία', # Greek
'समुद्र तट पर एक खूबसूरत सूर्यास्त', # Hindi
'Un bellissimo tramonto sulla spiaggia', # Italian
'浜辺に沈む美しい夕日', # Japanese
'해변 위로 아름다운 일몰', # Korean
]
# Public image URLs or PIL Images
image_urls = ['https://i.ibb.co/nQNGqL0/beach1.jpg', 'https://i.ibb.co/r5w8hG8/beach2.jpg']
# Tokenize input texts and transform input images
input_ids = tokenizer(sentences, return_tensors='np')['input_ids']
pixel_values = image_processor(image_urls)['pixel_values']
# Start an ONNX Runtime Session
session = ort.InferenceSession('jina-clip-v2/onnx/model.onnx')
# Run inference
output = session.run(None, {'input_ids': input_ids, 'pixel_values': pixel_values})
# Keep the normalised embeddings, first 2 outputs are un-normalized
_, _, text_embeddings, image_embeddings = output
```
</details>
## License
This model is licensed to download and run under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en). It is available for commercial use via the [Jina Embeddings API](https://jina.ai/embeddings/), [AWS](https://aws.amazon.com/marketplace/pp/prodview-bfbctuqmky676), [Azure](https://azuremarketplace.microsoft.com/en-gb/marketplace/apps/jinaai.jina-clip-v2-vm?tab=Overview), and [GCP](https://console.cloud.google.com/marketplace/browse?hl=en&inv=1&invt=AbiFWQ&q=jina). To download for commercial use, please [contact us](https://jina.ai/contact-sales).
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
## Citation
If you find `jina-clip-v2` useful in your research, please cite the following paper:
```bibtex
@misc{koukounas2024jinaclipv2multilingualmultimodalembeddings,
title={jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images},
author={Andreas Koukounas and Georgios Mastrapas and Bo Wang and Mohammad Kalim Akram and Sedigheh Eslami and Michael Günther and Isabelle Mohr and Saba Sturua and Scott Martens and Nan Wang and Han Xiao},
year={2024},
eprint={2412.08802},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.08802},
}
``` |