|
import base64 |
|
import json |
|
import os |
|
from io import BytesIO |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import requests |
|
import torch |
|
from PIL import Image |
|
from torch import nn |
|
from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoTokenizer |
|
|
|
|
|
class Transformer(nn.Module): |
|
"""Huggingface AutoModel to generate token embeddings. |
|
Loads the correct class, e.g. BERT / RoBERTa etc. |
|
|
|
Args: |
|
model_name_or_path: Huggingface models name |
|
(https://huggingface.co/models) |
|
max_seq_length: Truncate any inputs longer than max_seq_length |
|
model_args: Keyword arguments passed to the Huggingface |
|
Transformers model |
|
tokenizer_args: Keyword arguments passed to the Huggingface |
|
Transformers tokenizer |
|
config_args: Keyword arguments passed to the Huggingface |
|
Transformers config |
|
cache_dir: Cache dir for Huggingface Transformers to store/load |
|
models |
|
do_lower_case: If true, lowercases the input (independent if the |
|
model is cased or not) |
|
tokenizer_name_or_path: Name or path of the tokenizer. When |
|
None, then model_name_or_path is used |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model_name_or_path: str, |
|
max_seq_length: Optional[int] = None, |
|
model_args: Optional[Dict[str, Any]] = None, |
|
tokenizer_args: Optional[Dict[str, Any]] = None, |
|
config_args: Optional[Dict[str, Any]] = None, |
|
cache_dir: Optional[str] = None, |
|
do_lower_case: bool = False, |
|
tokenizer_name_or_path: str = None, |
|
) -> None: |
|
super(Transformer, self).__init__() |
|
self.config_keys = ["max_seq_length", "do_lower_case"] |
|
self.do_lower_case = do_lower_case |
|
if model_args is None: |
|
model_args = {} |
|
if tokenizer_args is None: |
|
tokenizer_args = {} |
|
if config_args is None: |
|
config_args = {} |
|
|
|
config = AutoConfig.from_pretrained( |
|
model_name_or_path, **config_args, cache_dir=cache_dir |
|
) |
|
self.jina_clip = AutoModel.from_pretrained( |
|
model_name_or_path, config=config, cache_dir=cache_dir, **model_args |
|
) |
|
|
|
if max_seq_length is not None and "model_max_length" not in tokenizer_args: |
|
tokenizer_args["model_max_length"] = max_seq_length |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
( |
|
tokenizer_name_or_path |
|
if tokenizer_name_or_path is not None |
|
else model_name_or_path |
|
), |
|
cache_dir=cache_dir, |
|
**tokenizer_args, |
|
) |
|
self.preprocessor = AutoImageProcessor.from_pretrained( |
|
( |
|
tokenizer_name_or_path |
|
if tokenizer_name_or_path is not None |
|
else model_name_or_path |
|
), |
|
cache_dir=cache_dir, |
|
**tokenizer_args, |
|
) |
|
|
|
|
|
if max_seq_length is None: |
|
if ( |
|
hasattr(self.jina_clip, "config") |
|
and hasattr(self.jina_clip.config, "max_position_embeddings") |
|
and hasattr(self.tokenizer, "model_max_length") |
|
): |
|
max_seq_length = min( |
|
self.jina_clip.config.max_position_embeddings, |
|
self.tokenizer.model_max_length, |
|
) |
|
|
|
self.max_seq_length = max_seq_length |
|
|
|
if tokenizer_name_or_path is not None: |
|
self.jina_clip.config.tokenizer_class = self.tokenizer.__class__.__name__ |
|
|
|
def forward( |
|
self, features: Dict[str, torch.Tensor] |
|
) -> Dict[str, torch.Tensor]: |
|
"""Returns token_embeddings, cls_token""" |
|
if "input_ids" in features: |
|
embedding = self.jina_clip.get_text_features( |
|
input_ids=features["input_ids"] |
|
) |
|
else: |
|
embedding = self.jina_clip.get_image_features( |
|
pixel_values=features["pixel_values"] |
|
) |
|
return {"sentence_embedding": embedding} |
|
|
|
def get_word_embedding_dimension(self) -> int: |
|
return self.config.text_config.embed_dim |
|
|
|
def decode_data_image(data_image_str): |
|
header, data = data_image_str.split(',', 1) |
|
image_data = base64.b64decode(data) |
|
return Image.open(BytesIO(image_data)) |
|
|
|
def tokenize( |
|
self, batch: Union[List[str]], padding: Union[str, bool] = True |
|
) -> Dict[str, torch.Tensor]: |
|
"""Tokenizes a text and maps tokens to token-ids""" |
|
images = [] |
|
texts = [] |
|
for sample in batch: |
|
if isinstance(sample, str): |
|
if sample.startswith('http'): |
|
response = requests.get(sample) |
|
images.append(Image.open(BytesIO(response.content)).convert('RGB')) |
|
elif sample.startswith('data:image/'): |
|
images.append(self.decode_data_image(sample).convert('RGB')) |
|
else: |
|
|
|
try: |
|
images.append(Image.open(sample).convert('RGB')) |
|
except: |
|
texts.append(sample) |
|
elif isinstance(sample, Image.Image): |
|
images.append(sample.convert('RGB')) |
|
|
|
if images and texts: |
|
raise ValueError('Batch must contain either images or texts, not both') |
|
|
|
if texts: |
|
return self.tokenizer( |
|
texts, |
|
padding=padding, |
|
truncation="longest_first", |
|
return_tensors="pt", |
|
max_length=self.max_seq_length, |
|
) |
|
elif images: |
|
return self.preprocessor(images) |
|
return {} |
|
|
|
def save(self, output_path: str, safe_serialization: bool = True) -> None: |
|
self.jina_clip.save_pretrained( |
|
output_path, safe_serialization=safe_serialization |
|
) |
|
self.tokenizer.save_pretrained(output_path) |
|
self.preprocessor.save_pretrained(output_path) |
|
|
|
@staticmethod |
|
def load(input_path: str) -> "Transformer": |
|
|
|
for config_name in [ |
|
"sentence_bert_config.json", |
|
"sentence_roberta_config.json", |
|
"sentence_distilbert_config.json", |
|
"sentence_camembert_config.json", |
|
"sentence_albert_config.json", |
|
"sentence_xlm-roberta_config.json", |
|
"sentence_xlnet_config.json", |
|
]: |
|
sbert_config_path = os.path.join(input_path, config_name) |
|
if os.path.exists(sbert_config_path): |
|
break |
|
|
|
with open(sbert_config_path) as fIn: |
|
config = json.load(fIn) |
|
|
|
if "model_args" in config and "trust_remote_code" in config["model_args"]: |
|
config["model_args"].pop("trust_remote_code") |
|
if ( |
|
"tokenizer_args" in config |
|
and "trust_remote_code" in config["tokenizer_args"] |
|
): |
|
config["tokenizer_args"].pop("trust_remote_code") |
|
if "config_args" in config and "trust_remote_code" in config["config_args"]: |
|
config["config_args"].pop("trust_remote_code") |
|
return Transformer(model_name_or_path=input_path, **config) |