bwang0911 commited on
Commit
df37f28
·
1 Parent(s): 8eac7ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2595 -4
README.md CHANGED
@@ -6,14 +6,2605 @@ tags:
6
  - sentence-transformers
7
  - feature-extraction
8
  - sentence-similarity
9
- - alibi
10
  datasets:
11
- - allenai/c4
12
  language: en
13
  license: apache-2.0
14
  model-index:
15
- - name: jina-embedding-s-en-v2
16
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ---
18
  <!-- TODO: add evaluation results here -->
19
  <br><br>
 
6
  - sentence-transformers
7
  - feature-extraction
8
  - sentence-similarity
 
9
  datasets:
10
+ - jinaai/negation-dataset
11
  language: en
12
  license: apache-2.0
13
  model-index:
14
+ - name: jina-embedding-s-en-v2
15
+ results:
16
+ - task:
17
+ type: Classification
18
+ dataset:
19
+ type: mteb/amazon_counterfactual
20
+ name: MTEB AmazonCounterfactualClassification (en)
21
+ config: en
22
+ split: test
23
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
24
+ metrics:
25
+ - type: accuracy
26
+ value: 71.35820895522387
27
+ - type: ap
28
+ value: 33.99931933598115
29
+ - type: f1
30
+ value: 65.3853685535555
31
+ - task:
32
+ type: Classification
33
+ dataset:
34
+ type: mteb/amazon_polarity
35
+ name: MTEB AmazonPolarityClassification
36
+ config: default
37
+ split: test
38
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
39
+ metrics:
40
+ - type: accuracy
41
+ value: 82.90140000000001
42
+ - type: ap
43
+ value: 78.01434597815617
44
+ - type: f1
45
+ value: 82.83357802722676
46
+ - task:
47
+ type: Classification
48
+ dataset:
49
+ type: mteb/amazon_reviews_multi
50
+ name: MTEB AmazonReviewsClassification (en)
51
+ config: en
52
+ split: test
53
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
54
+ metrics:
55
+ - type: accuracy
56
+ value: 40.88999999999999
57
+ - type: f1
58
+ value: 39.209432767163456
59
+ - task:
60
+ type: Retrieval
61
+ dataset:
62
+ type: arguana
63
+ name: MTEB ArguAna
64
+ config: default
65
+ split: test
66
+ revision: None
67
+ metrics:
68
+ - type: map_at_1
69
+ value: 23.257
70
+ - type: map_at_10
71
+ value: 37.946000000000005
72
+ - type: map_at_100
73
+ value: 39.17
74
+ - type: map_at_1000
75
+ value: 39.181
76
+ - type: map_at_3
77
+ value: 32.99
78
+ - type: map_at_5
79
+ value: 35.467999999999996
80
+ - type: mrr_at_1
81
+ value: 23.541999999999998
82
+ - type: mrr_at_10
83
+ value: 38.057
84
+ - type: mrr_at_100
85
+ value: 39.289
86
+ - type: mrr_at_1000
87
+ value: 39.299
88
+ - type: mrr_at_3
89
+ value: 33.096
90
+ - type: mrr_at_5
91
+ value: 35.628
92
+ - type: ndcg_at_1
93
+ value: 23.257
94
+ - type: ndcg_at_10
95
+ value: 46.729
96
+ - type: ndcg_at_100
97
+ value: 51.900999999999996
98
+ - type: ndcg_at_1000
99
+ value: 52.16
100
+ - type: ndcg_at_3
101
+ value: 36.323
102
+ - type: ndcg_at_5
103
+ value: 40.766999999999996
104
+ - type: precision_at_1
105
+ value: 23.257
106
+ - type: precision_at_10
107
+ value: 7.510999999999999
108
+ - type: precision_at_100
109
+ value: 0.976
110
+ - type: precision_at_1000
111
+ value: 0.1
112
+ - type: precision_at_3
113
+ value: 15.339
114
+ - type: precision_at_5
115
+ value: 11.350999999999999
116
+ - type: recall_at_1
117
+ value: 23.257
118
+ - type: recall_at_10
119
+ value: 75.107
120
+ - type: recall_at_100
121
+ value: 97.58200000000001
122
+ - type: recall_at_1000
123
+ value: 99.57300000000001
124
+ - type: recall_at_3
125
+ value: 46.017
126
+ - type: recall_at_5
127
+ value: 56.757000000000005
128
+ - task:
129
+ type: Clustering
130
+ dataset:
131
+ type: mteb/arxiv-clustering-p2p
132
+ name: MTEB ArxivClusteringP2P
133
+ config: default
134
+ split: test
135
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
136
+ metrics:
137
+ - type: v_measure
138
+ value: 44.02420878391967
139
+ - task:
140
+ type: Clustering
141
+ dataset:
142
+ type: mteb/arxiv-clustering-s2s
143
+ name: MTEB ArxivClusteringS2S
144
+ config: default
145
+ split: test
146
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
147
+ metrics:
148
+ - type: v_measure
149
+ value: 35.16136856000258
150
+ - task:
151
+ type: Reranking
152
+ dataset:
153
+ type: mteb/askubuntudupquestions-reranking
154
+ name: MTEB AskUbuntuDupQuestions
155
+ config: default
156
+ split: test
157
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
158
+ metrics:
159
+ - type: map
160
+ value: 59.61809790513646
161
+ - type: mrr
162
+ value: 73.07215406938397
163
+ - task:
164
+ type: STS
165
+ dataset:
166
+ type: mteb/biosses-sts
167
+ name: MTEB BIOSSES
168
+ config: default
169
+ split: test
170
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
171
+ metrics:
172
+ - type: cos_sim_pearson
173
+ value: 82.0167350090749
174
+ - type: cos_sim_spearman
175
+ value: 80.51569002630401
176
+ - type: euclidean_pearson
177
+ value: 81.46820525099726
178
+ - type: euclidean_spearman
179
+ value: 80.51569002630401
180
+ - type: manhattan_pearson
181
+ value: 81.35596555056757
182
+ - type: manhattan_spearman
183
+ value: 80.12592210903303
184
+ - task:
185
+ type: Classification
186
+ dataset:
187
+ type: mteb/banking77
188
+ name: MTEB Banking77Classification
189
+ config: default
190
+ split: test
191
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
192
+ metrics:
193
+ - type: accuracy
194
+ value: 78.25
195
+ - type: f1
196
+ value: 77.34950913540605
197
+ - task:
198
+ type: Clustering
199
+ dataset:
200
+ type: mteb/biorxiv-clustering-p2p
201
+ name: MTEB BiorxivClusteringP2P
202
+ config: default
203
+ split: test
204
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
205
+ metrics:
206
+ - type: v_measure
207
+ value: 35.57238596005698
208
+ - task:
209
+ type: Clustering
210
+ dataset:
211
+ type: mteb/biorxiv-clustering-s2s
212
+ name: MTEB BiorxivClusteringS2S
213
+ config: default
214
+ split: test
215
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
216
+ metrics:
217
+ - type: v_measure
218
+ value: 29.066444306196683
219
+ - task:
220
+ type: Retrieval
221
+ dataset:
222
+ type: BeIR/cqadupstack
223
+ name: MTEB CQADupstackAndroidRetrieval
224
+ config: default
225
+ split: test
226
+ revision: None
227
+ metrics:
228
+ - type: map_at_1
229
+ value: 31.891000000000002
230
+ - type: map_at_10
231
+ value: 42.772
232
+ - type: map_at_100
233
+ value: 44.108999999999995
234
+ - type: map_at_1000
235
+ value: 44.236
236
+ - type: map_at_3
237
+ value: 39.289
238
+ - type: map_at_5
239
+ value: 41.113
240
+ - type: mrr_at_1
241
+ value: 39.342
242
+ - type: mrr_at_10
243
+ value: 48.852000000000004
244
+ - type: mrr_at_100
245
+ value: 49.534
246
+ - type: mrr_at_1000
247
+ value: 49.582
248
+ - type: mrr_at_3
249
+ value: 46.089999999999996
250
+ - type: mrr_at_5
251
+ value: 47.685
252
+ - type: ndcg_at_1
253
+ value: 39.342
254
+ - type: ndcg_at_10
255
+ value: 48.988
256
+ - type: ndcg_at_100
257
+ value: 53.854
258
+ - type: ndcg_at_1000
259
+ value: 55.955
260
+ - type: ndcg_at_3
261
+ value: 43.877
262
+ - type: ndcg_at_5
263
+ value: 46.027
264
+ - type: precision_at_1
265
+ value: 39.342
266
+ - type: precision_at_10
267
+ value: 9.285
268
+ - type: precision_at_100
269
+ value: 1.488
270
+ - type: precision_at_1000
271
+ value: 0.194
272
+ - type: precision_at_3
273
+ value: 20.696
274
+ - type: precision_at_5
275
+ value: 14.878
276
+ - type: recall_at_1
277
+ value: 31.891000000000002
278
+ - type: recall_at_10
279
+ value: 60.608
280
+ - type: recall_at_100
281
+ value: 81.025
282
+ - type: recall_at_1000
283
+ value: 94.883
284
+ - type: recall_at_3
285
+ value: 45.694
286
+ - type: recall_at_5
287
+ value: 51.684
288
+ - task:
289
+ type: Retrieval
290
+ dataset:
291
+ type: BeIR/cqadupstack
292
+ name: MTEB CQADupstackEnglishRetrieval
293
+ config: default
294
+ split: test
295
+ revision: None
296
+ metrics:
297
+ - type: map_at_1
298
+ value: 28.778
299
+ - type: map_at_10
300
+ value: 37.632
301
+ - type: map_at_100
302
+ value: 38.800000000000004
303
+ - type: map_at_1000
304
+ value: 38.934999999999995
305
+ - type: map_at_3
306
+ value: 35.293
307
+ - type: map_at_5
308
+ value: 36.547000000000004
309
+ - type: mrr_at_1
310
+ value: 35.35
311
+ - type: mrr_at_10
312
+ value: 42.936
313
+ - type: mrr_at_100
314
+ value: 43.69
315
+ - type: mrr_at_1000
316
+ value: 43.739
317
+ - type: mrr_at_3
318
+ value: 41.062
319
+ - type: mrr_at_5
320
+ value: 42.097
321
+ - type: ndcg_at_1
322
+ value: 35.35
323
+ - type: ndcg_at_10
324
+ value: 42.528
325
+ - type: ndcg_at_100
326
+ value: 46.983000000000004
327
+ - type: ndcg_at_1000
328
+ value: 49.187999999999995
329
+ - type: ndcg_at_3
330
+ value: 39.271
331
+ - type: ndcg_at_5
332
+ value: 40.654
333
+ - type: precision_at_1
334
+ value: 35.35
335
+ - type: precision_at_10
336
+ value: 7.828
337
+ - type: precision_at_100
338
+ value: 1.3010000000000002
339
+ - type: precision_at_1000
340
+ value: 0.17700000000000002
341
+ - type: precision_at_3
342
+ value: 18.96
343
+ - type: precision_at_5
344
+ value: 13.120999999999999
345
+ - type: recall_at_1
346
+ value: 28.778
347
+ - type: recall_at_10
348
+ value: 50.775000000000006
349
+ - type: recall_at_100
350
+ value: 69.66799999999999
351
+ - type: recall_at_1000
352
+ value: 83.638
353
+ - type: recall_at_3
354
+ value: 40.757
355
+ - type: recall_at_5
356
+ value: 44.86
357
+ - task:
358
+ type: Retrieval
359
+ dataset:
360
+ type: BeIR/cqadupstack
361
+ name: MTEB CQADupstackGamingRetrieval
362
+ config: default
363
+ split: test
364
+ revision: None
365
+ metrics:
366
+ - type: map_at_1
367
+ value: 37.584
368
+ - type: map_at_10
369
+ value: 49.69
370
+ - type: map_at_100
371
+ value: 50.639
372
+ - type: map_at_1000
373
+ value: 50.702999999999996
374
+ - type: map_at_3
375
+ value: 46.61
376
+ - type: map_at_5
377
+ value: 48.486000000000004
378
+ - type: mrr_at_1
379
+ value: 43.009
380
+ - type: mrr_at_10
381
+ value: 52.949999999999996
382
+ - type: mrr_at_100
383
+ value: 53.618
384
+ - type: mrr_at_1000
385
+ value: 53.65299999999999
386
+ - type: mrr_at_3
387
+ value: 50.605999999999995
388
+ - type: mrr_at_5
389
+ value: 52.095
390
+ - type: ndcg_at_1
391
+ value: 43.009
392
+ - type: ndcg_at_10
393
+ value: 55.278000000000006
394
+ - type: ndcg_at_100
395
+ value: 59.134
396
+ - type: ndcg_at_1000
397
+ value: 60.528999999999996
398
+ - type: ndcg_at_3
399
+ value: 50.184
400
+ - type: ndcg_at_5
401
+ value: 52.919000000000004
402
+ - type: precision_at_1
403
+ value: 43.009
404
+ - type: precision_at_10
405
+ value: 8.821
406
+ - type: precision_at_100
407
+ value: 1.161
408
+ - type: precision_at_1000
409
+ value: 0.133
410
+ - type: precision_at_3
411
+ value: 22.424
412
+ - type: precision_at_5
413
+ value: 15.436
414
+ - type: recall_at_1
415
+ value: 37.584
416
+ - type: recall_at_10
417
+ value: 68.514
418
+ - type: recall_at_100
419
+ value: 85.099
420
+ - type: recall_at_1000
421
+ value: 95.123
422
+ - type: recall_at_3
423
+ value: 55.007
424
+ - type: recall_at_5
425
+ value: 61.714999999999996
426
+ - task:
427
+ type: Retrieval
428
+ dataset:
429
+ type: BeIR/cqadupstack
430
+ name: MTEB CQADupstackGisRetrieval
431
+ config: default
432
+ split: test
433
+ revision: None
434
+ metrics:
435
+ - type: map_at_1
436
+ value: 24.7
437
+ - type: map_at_10
438
+ value: 32.804
439
+ - type: map_at_100
440
+ value: 33.738
441
+ - type: map_at_1000
442
+ value: 33.825
443
+ - type: map_at_3
444
+ value: 30.639
445
+ - type: map_at_5
446
+ value: 31.781
447
+ - type: mrr_at_1
448
+ value: 26.328000000000003
449
+ - type: mrr_at_10
450
+ value: 34.679
451
+ - type: mrr_at_100
452
+ value: 35.510000000000005
453
+ - type: mrr_at_1000
454
+ value: 35.577999999999996
455
+ - type: mrr_at_3
456
+ value: 32.58
457
+ - type: mrr_at_5
458
+ value: 33.687
459
+ - type: ndcg_at_1
460
+ value: 26.328000000000003
461
+ - type: ndcg_at_10
462
+ value: 37.313
463
+ - type: ndcg_at_100
464
+ value: 42.004000000000005
465
+ - type: ndcg_at_1000
466
+ value: 44.232
467
+ - type: ndcg_at_3
468
+ value: 33.076
469
+ - type: ndcg_at_5
470
+ value: 34.966
471
+ - type: precision_at_1
472
+ value: 26.328000000000003
473
+ - type: precision_at_10
474
+ value: 5.627
475
+ - type: precision_at_100
476
+ value: 0.8410000000000001
477
+ - type: precision_at_1000
478
+ value: 0.106
479
+ - type: precision_at_3
480
+ value: 14.011000000000001
481
+ - type: precision_at_5
482
+ value: 9.582
483
+ - type: recall_at_1
484
+ value: 24.7
485
+ - type: recall_at_10
486
+ value: 49.324
487
+ - type: recall_at_100
488
+ value: 71.018
489
+ - type: recall_at_1000
490
+ value: 87.905
491
+ - type: recall_at_3
492
+ value: 37.7
493
+ - type: recall_at_5
494
+ value: 42.281
495
+ - task:
496
+ type: Retrieval
497
+ dataset:
498
+ type: BeIR/cqadupstack
499
+ name: MTEB CQADupstackMathematicaRetrieval
500
+ config: default
501
+ split: test
502
+ revision: None
503
+ metrics:
504
+ - type: map_at_1
505
+ value: 14.350999999999999
506
+ - type: map_at_10
507
+ value: 21.745
508
+ - type: map_at_100
509
+ value: 22.731
510
+ - type: map_at_1000
511
+ value: 22.852
512
+ - type: map_at_3
513
+ value: 19.245
514
+ - type: map_at_5
515
+ value: 20.788
516
+ - type: mrr_at_1
517
+ value: 18.159
518
+ - type: mrr_at_10
519
+ value: 25.833000000000002
520
+ - type: mrr_at_100
521
+ value: 26.728
522
+ - type: mrr_at_1000
523
+ value: 26.802
524
+ - type: mrr_at_3
525
+ value: 23.383000000000003
526
+ - type: mrr_at_5
527
+ value: 24.887999999999998
528
+ - type: ndcg_at_1
529
+ value: 18.159
530
+ - type: ndcg_at_10
531
+ value: 26.518000000000004
532
+ - type: ndcg_at_100
533
+ value: 31.473000000000003
534
+ - type: ndcg_at_1000
535
+ value: 34.576
536
+ - type: ndcg_at_3
537
+ value: 21.907
538
+ - type: ndcg_at_5
539
+ value: 24.39
540
+ - type: precision_at_1
541
+ value: 18.159
542
+ - type: precision_at_10
543
+ value: 4.938
544
+ - type: precision_at_100
545
+ value: 0.853
546
+ - type: precision_at_1000
547
+ value: 0.125
548
+ - type: precision_at_3
549
+ value: 10.655000000000001
550
+ - type: precision_at_5
551
+ value: 7.985
552
+ - type: recall_at_1
553
+ value: 14.350999999999999
554
+ - type: recall_at_10
555
+ value: 37.284
556
+ - type: recall_at_100
557
+ value: 59.11300000000001
558
+ - type: recall_at_1000
559
+ value: 81.634
560
+ - type: recall_at_3
561
+ value: 24.753
562
+ - type: recall_at_5
563
+ value: 30.979
564
+ - task:
565
+ type: Retrieval
566
+ dataset:
567
+ type: BeIR/cqadupstack
568
+ name: MTEB CQADupstackPhysicsRetrieval
569
+ config: default
570
+ split: test
571
+ revision: None
572
+ metrics:
573
+ - type: map_at_1
574
+ value: 26.978
575
+ - type: map_at_10
576
+ value: 36.276
577
+ - type: map_at_100
578
+ value: 37.547000000000004
579
+ - type: map_at_1000
580
+ value: 37.678
581
+ - type: map_at_3
582
+ value: 33.674
583
+ - type: map_at_5
584
+ value: 35.119
585
+ - type: mrr_at_1
586
+ value: 32.916000000000004
587
+ - type: mrr_at_10
588
+ value: 41.798
589
+ - type: mrr_at_100
590
+ value: 42.72
591
+ - type: mrr_at_1000
592
+ value: 42.778
593
+ - type: mrr_at_3
594
+ value: 39.493
595
+ - type: mrr_at_5
596
+ value: 40.927
597
+ - type: ndcg_at_1
598
+ value: 32.916000000000004
599
+ - type: ndcg_at_10
600
+ value: 41.81
601
+ - type: ndcg_at_100
602
+ value: 47.284
603
+ - type: ndcg_at_1000
604
+ value: 49.702
605
+ - type: ndcg_at_3
606
+ value: 37.486999999999995
607
+ - type: ndcg_at_5
608
+ value: 39.597
609
+ - type: precision_at_1
610
+ value: 32.916000000000004
611
+ - type: precision_at_10
612
+ value: 7.411
613
+ - type: precision_at_100
614
+ value: 1.189
615
+ - type: precision_at_1000
616
+ value: 0.158
617
+ - type: precision_at_3
618
+ value: 17.581
619
+ - type: precision_at_5
620
+ value: 12.397
621
+ - type: recall_at_1
622
+ value: 26.978
623
+ - type: recall_at_10
624
+ value: 52.869
625
+ - type: recall_at_100
626
+ value: 75.78399999999999
627
+ - type: recall_at_1000
628
+ value: 91.545
629
+ - type: recall_at_3
630
+ value: 40.717
631
+ - type: recall_at_5
632
+ value: 46.168
633
+ - task:
634
+ type: Retrieval
635
+ dataset:
636
+ type: BeIR/cqadupstack
637
+ name: MTEB CQADupstackProgrammersRetrieval
638
+ config: default
639
+ split: test
640
+ revision: None
641
+ metrics:
642
+ - type: map_at_1
643
+ value: 24.641
644
+ - type: map_at_10
645
+ value: 32.916000000000004
646
+ - type: map_at_100
647
+ value: 34.165
648
+ - type: map_at_1000
649
+ value: 34.286
650
+ - type: map_at_3
651
+ value: 30.335
652
+ - type: map_at_5
653
+ value: 31.569000000000003
654
+ - type: mrr_at_1
655
+ value: 30.593999999999998
656
+ - type: mrr_at_10
657
+ value: 38.448
658
+ - type: mrr_at_100
659
+ value: 39.299
660
+ - type: mrr_at_1000
661
+ value: 39.362
662
+ - type: mrr_at_3
663
+ value: 36.244
664
+ - type: mrr_at_5
665
+ value: 37.232
666
+ - type: ndcg_at_1
667
+ value: 30.593999999999998
668
+ - type: ndcg_at_10
669
+ value: 38.2
670
+ - type: ndcg_at_100
671
+ value: 43.742
672
+ - type: ndcg_at_1000
673
+ value: 46.217000000000006
674
+ - type: ndcg_at_3
675
+ value: 33.925
676
+ - type: ndcg_at_5
677
+ value: 35.394
678
+ - type: precision_at_1
679
+ value: 30.593999999999998
680
+ - type: precision_at_10
681
+ value: 6.895
682
+ - type: precision_at_100
683
+ value: 1.1320000000000001
684
+ - type: precision_at_1000
685
+ value: 0.153
686
+ - type: precision_at_3
687
+ value: 16.096
688
+ - type: precision_at_5
689
+ value: 11.05
690
+ - type: recall_at_1
691
+ value: 24.641
692
+ - type: recall_at_10
693
+ value: 48.588
694
+ - type: recall_at_100
695
+ value: 72.841
696
+ - type: recall_at_1000
697
+ value: 89.535
698
+ - type: recall_at_3
699
+ value: 36.087
700
+ - type: recall_at_5
701
+ value: 40.346
702
+ - task:
703
+ type: Retrieval
704
+ dataset:
705
+ type: BeIR/cqadupstack
706
+ name: MTEB CQADupstackRetrieval
707
+ config: default
708
+ split: test
709
+ revision: None
710
+ metrics:
711
+ - type: map_at_1
712
+ value: 24.79425
713
+ - type: map_at_10
714
+ value: 33.12033333333333
715
+ - type: map_at_100
716
+ value: 34.221333333333334
717
+ - type: map_at_1000
718
+ value: 34.3435
719
+ - type: map_at_3
720
+ value: 30.636583333333338
721
+ - type: map_at_5
722
+ value: 31.974083333333326
723
+ - type: mrr_at_1
724
+ value: 29.242416666666664
725
+ - type: mrr_at_10
726
+ value: 37.11675
727
+ - type: mrr_at_100
728
+ value: 37.93783333333334
729
+ - type: mrr_at_1000
730
+ value: 38.003083333333336
731
+ - type: mrr_at_3
732
+ value: 34.904666666666664
733
+ - type: mrr_at_5
734
+ value: 36.12916666666667
735
+ - type: ndcg_at_1
736
+ value: 29.242416666666664
737
+ - type: ndcg_at_10
738
+ value: 38.03416666666667
739
+ - type: ndcg_at_100
740
+ value: 42.86674999999999
741
+ - type: ndcg_at_1000
742
+ value: 45.34550000000001
743
+ - type: ndcg_at_3
744
+ value: 33.76466666666666
745
+ - type: ndcg_at_5
746
+ value: 35.668666666666674
747
+ - type: precision_at_1
748
+ value: 29.242416666666664
749
+ - type: precision_at_10
750
+ value: 6.589833333333334
751
+ - type: precision_at_100
752
+ value: 1.0693333333333332
753
+ - type: precision_at_1000
754
+ value: 0.14641666666666667
755
+ - type: precision_at_3
756
+ value: 15.430749999999998
757
+ - type: precision_at_5
758
+ value: 10.833833333333333
759
+ - type: recall_at_1
760
+ value: 24.79425
761
+ - type: recall_at_10
762
+ value: 48.582916666666655
763
+ - type: recall_at_100
764
+ value: 69.88499999999999
765
+ - type: recall_at_1000
766
+ value: 87.211
767
+ - type: recall_at_3
768
+ value: 36.625499999999995
769
+ - type: recall_at_5
770
+ value: 41.553999999999995
771
+ - task:
772
+ type: Retrieval
773
+ dataset:
774
+ type: BeIR/cqadupstack
775
+ name: MTEB CQADupstackStatsRetrieval
776
+ config: default
777
+ split: test
778
+ revision: None
779
+ metrics:
780
+ - type: map_at_1
781
+ value: 22.767
782
+ - type: map_at_10
783
+ value: 28.450999999999997
784
+ - type: map_at_100
785
+ value: 29.332
786
+ - type: map_at_1000
787
+ value: 29.426000000000002
788
+ - type: map_at_3
789
+ value: 26.379
790
+ - type: map_at_5
791
+ value: 27.584999999999997
792
+ - type: mrr_at_1
793
+ value: 25.46
794
+ - type: mrr_at_10
795
+ value: 30.974
796
+ - type: mrr_at_100
797
+ value: 31.784000000000002
798
+ - type: mrr_at_1000
799
+ value: 31.857999999999997
800
+ - type: mrr_at_3
801
+ value: 28.962
802
+ - type: mrr_at_5
803
+ value: 30.066
804
+ - type: ndcg_at_1
805
+ value: 25.46
806
+ - type: ndcg_at_10
807
+ value: 32.041
808
+ - type: ndcg_at_100
809
+ value: 36.522
810
+ - type: ndcg_at_1000
811
+ value: 39.101
812
+ - type: ndcg_at_3
813
+ value: 28.152
814
+ - type: ndcg_at_5
815
+ value: 30.03
816
+ - type: precision_at_1
817
+ value: 25.46
818
+ - type: precision_at_10
819
+ value: 4.893
820
+ - type: precision_at_100
821
+ value: 0.77
822
+ - type: precision_at_1000
823
+ value: 0.107
824
+ - type: precision_at_3
825
+ value: 11.605
826
+ - type: precision_at_5
827
+ value: 8.19
828
+ - type: recall_at_1
829
+ value: 22.767
830
+ - type: recall_at_10
831
+ value: 40.71
832
+ - type: recall_at_100
833
+ value: 61.334999999999994
834
+ - type: recall_at_1000
835
+ value: 80.567
836
+ - type: recall_at_3
837
+ value: 30.198000000000004
838
+ - type: recall_at_5
839
+ value: 34.803
840
+ - task:
841
+ type: Retrieval
842
+ dataset:
843
+ type: BeIR/cqadupstack
844
+ name: MTEB CQADupstackTexRetrieval
845
+ config: default
846
+ split: test
847
+ revision: None
848
+ metrics:
849
+ - type: map_at_1
850
+ value: 16.722
851
+ - type: map_at_10
852
+ value: 22.794
853
+ - type: map_at_100
854
+ value: 23.7
855
+ - type: map_at_1000
856
+ value: 23.822
857
+ - type: map_at_3
858
+ value: 20.781
859
+ - type: map_at_5
860
+ value: 22.024
861
+ - type: mrr_at_1
862
+ value: 20.061999999999998
863
+ - type: mrr_at_10
864
+ value: 26.346999999999998
865
+ - type: mrr_at_100
866
+ value: 27.153
867
+ - type: mrr_at_1000
868
+ value: 27.233
869
+ - type: mrr_at_3
870
+ value: 24.375
871
+ - type: mrr_at_5
872
+ value: 25.593
873
+ - type: ndcg_at_1
874
+ value: 20.061999999999998
875
+ - type: ndcg_at_10
876
+ value: 26.785999999999998
877
+ - type: ndcg_at_100
878
+ value: 31.319999999999997
879
+ - type: ndcg_at_1000
880
+ value: 34.346
881
+ - type: ndcg_at_3
882
+ value: 23.219
883
+ - type: ndcg_at_5
884
+ value: 25.107000000000003
885
+ - type: precision_at_1
886
+ value: 20.061999999999998
887
+ - type: precision_at_10
888
+ value: 4.78
889
+ - type: precision_at_100
890
+ value: 0.83
891
+ - type: precision_at_1000
892
+ value: 0.125
893
+ - type: precision_at_3
894
+ value: 10.874
895
+ - type: precision_at_5
896
+ value: 7.956
897
+ - type: recall_at_1
898
+ value: 16.722
899
+ - type: recall_at_10
900
+ value: 35.204
901
+ - type: recall_at_100
902
+ value: 55.797
903
+ - type: recall_at_1000
904
+ value: 77.689
905
+ - type: recall_at_3
906
+ value: 25.245
907
+ - type: recall_at_5
908
+ value: 30.115
909
+ - task:
910
+ type: Retrieval
911
+ dataset:
912
+ type: BeIR/cqadupstack
913
+ name: MTEB CQADupstackUnixRetrieval
914
+ config: default
915
+ split: test
916
+ revision: None
917
+ metrics:
918
+ - type: map_at_1
919
+ value: 24.842
920
+ - type: map_at_10
921
+ value: 32.917
922
+ - type: map_at_100
923
+ value: 33.961000000000006
924
+ - type: map_at_1000
925
+ value: 34.069
926
+ - type: map_at_3
927
+ value: 30.595
928
+ - type: map_at_5
929
+ value: 31.837
930
+ - type: mrr_at_1
931
+ value: 29.011
932
+ - type: mrr_at_10
933
+ value: 36.977
934
+ - type: mrr_at_100
935
+ value: 37.814
936
+ - type: mrr_at_1000
937
+ value: 37.885999999999996
938
+ - type: mrr_at_3
939
+ value: 34.966
940
+ - type: mrr_at_5
941
+ value: 36.043
942
+ - type: ndcg_at_1
943
+ value: 29.011
944
+ - type: ndcg_at_10
945
+ value: 37.735
946
+ - type: ndcg_at_100
947
+ value: 42.683
948
+ - type: ndcg_at_1000
949
+ value: 45.198
950
+ - type: ndcg_at_3
951
+ value: 33.650000000000006
952
+ - type: ndcg_at_5
953
+ value: 35.386
954
+ - type: precision_at_1
955
+ value: 29.011
956
+ - type: precision_at_10
957
+ value: 6.259
958
+ - type: precision_at_100
959
+ value: 0.984
960
+ - type: precision_at_1000
961
+ value: 0.13
962
+ - type: precision_at_3
963
+ value: 15.329999999999998
964
+ - type: precision_at_5
965
+ value: 10.541
966
+ - type: recall_at_1
967
+ value: 24.842
968
+ - type: recall_at_10
969
+ value: 48.304
970
+ - type: recall_at_100
971
+ value: 70.04899999999999
972
+ - type: recall_at_1000
973
+ value: 87.82600000000001
974
+ - type: recall_at_3
975
+ value: 36.922
976
+ - type: recall_at_5
977
+ value: 41.449999999999996
978
+ - task:
979
+ type: Retrieval
980
+ dataset:
981
+ type: BeIR/cqadupstack
982
+ name: MTEB CQADupstackWebmastersRetrieval
983
+ config: default
984
+ split: test
985
+ revision: None
986
+ metrics:
987
+ - type: map_at_1
988
+ value: 24.252000000000002
989
+ - type: map_at_10
990
+ value: 32.293
991
+ - type: map_at_100
992
+ value: 33.816
993
+ - type: map_at_1000
994
+ value: 34.053
995
+ - type: map_at_3
996
+ value: 29.781999999999996
997
+ - type: map_at_5
998
+ value: 31.008000000000003
999
+ - type: mrr_at_1
1000
+ value: 29.051
1001
+ - type: mrr_at_10
1002
+ value: 36.722
1003
+ - type: mrr_at_100
1004
+ value: 37.663000000000004
1005
+ - type: mrr_at_1000
1006
+ value: 37.734
1007
+ - type: mrr_at_3
1008
+ value: 34.354
1009
+ - type: mrr_at_5
1010
+ value: 35.609
1011
+ - type: ndcg_at_1
1012
+ value: 29.051
1013
+ - type: ndcg_at_10
1014
+ value: 37.775999999999996
1015
+ - type: ndcg_at_100
1016
+ value: 43.221
1017
+ - type: ndcg_at_1000
1018
+ value: 46.116
1019
+ - type: ndcg_at_3
1020
+ value: 33.403
1021
+ - type: ndcg_at_5
1022
+ value: 35.118
1023
+ - type: precision_at_1
1024
+ value: 29.051
1025
+ - type: precision_at_10
1026
+ value: 7.332
1027
+ - type: precision_at_100
1028
+ value: 1.49
1029
+ - type: precision_at_1000
1030
+ value: 0.23600000000000002
1031
+ - type: precision_at_3
1032
+ value: 15.415000000000001
1033
+ - type: precision_at_5
1034
+ value: 11.107
1035
+ - type: recall_at_1
1036
+ value: 24.252000000000002
1037
+ - type: recall_at_10
1038
+ value: 47.861
1039
+ - type: recall_at_100
1040
+ value: 72.21600000000001
1041
+ - type: recall_at_1000
1042
+ value: 90.886
1043
+ - type: recall_at_3
1044
+ value: 35.533
1045
+ - type: recall_at_5
1046
+ value: 39.959
1047
+ - task:
1048
+ type: Retrieval
1049
+ dataset:
1050
+ type: BeIR/cqadupstack
1051
+ name: MTEB CQADupstackWordpressRetrieval
1052
+ config: default
1053
+ split: test
1054
+ revision: None
1055
+ metrics:
1056
+ - type: map_at_1
1057
+ value: 20.025000000000002
1058
+ - type: map_at_10
1059
+ value: 27.154
1060
+ - type: map_at_100
1061
+ value: 28.118
1062
+ - type: map_at_1000
1063
+ value: 28.237000000000002
1064
+ - type: map_at_3
1065
+ value: 25.017
1066
+ - type: map_at_5
1067
+ value: 25.832
1068
+ - type: mrr_at_1
1069
+ value: 21.627
1070
+ - type: mrr_at_10
1071
+ value: 28.884999999999998
1072
+ - type: mrr_at_100
1073
+ value: 29.741
1074
+ - type: mrr_at_1000
1075
+ value: 29.831999999999997
1076
+ - type: mrr_at_3
1077
+ value: 26.741
1078
+ - type: mrr_at_5
1079
+ value: 27.628000000000004
1080
+ - type: ndcg_at_1
1081
+ value: 21.627
1082
+ - type: ndcg_at_10
1083
+ value: 31.436999999999998
1084
+ - type: ndcg_at_100
1085
+ value: 36.181000000000004
1086
+ - type: ndcg_at_1000
1087
+ value: 38.986
1088
+ - type: ndcg_at_3
1089
+ value: 27.025
1090
+ - type: ndcg_at_5
1091
+ value: 28.436
1092
+ - type: precision_at_1
1093
+ value: 21.627
1094
+ - type: precision_at_10
1095
+ value: 5.009
1096
+ - type: precision_at_100
1097
+ value: 0.7929999999999999
1098
+ - type: precision_at_1000
1099
+ value: 0.11299999999999999
1100
+ - type: precision_at_3
1101
+ value: 11.522
1102
+ - type: precision_at_5
1103
+ value: 7.763000000000001
1104
+ - type: recall_at_1
1105
+ value: 20.025000000000002
1106
+ - type: recall_at_10
1107
+ value: 42.954
1108
+ - type: recall_at_100
1109
+ value: 64.67500000000001
1110
+ - type: recall_at_1000
1111
+ value: 85.301
1112
+ - type: recall_at_3
1113
+ value: 30.892999999999997
1114
+ - type: recall_at_5
1115
+ value: 34.288000000000004
1116
+ - task:
1117
+ type: Retrieval
1118
+ dataset:
1119
+ type: climate-fever
1120
+ name: MTEB ClimateFEVER
1121
+ config: default
1122
+ split: test
1123
+ revision: None
1124
+ metrics:
1125
+ - type: map_at_1
1126
+ value: 10.079
1127
+ - type: map_at_10
1128
+ value: 16.930999999999997
1129
+ - type: map_at_100
1130
+ value: 18.398999999999997
1131
+ - type: map_at_1000
1132
+ value: 18.561
1133
+ - type: map_at_3
1134
+ value: 14.294
1135
+ - type: map_at_5
1136
+ value: 15.579
1137
+ - type: mrr_at_1
1138
+ value: 22.606
1139
+ - type: mrr_at_10
1140
+ value: 32.513
1141
+ - type: mrr_at_100
1142
+ value: 33.463
1143
+ - type: mrr_at_1000
1144
+ value: 33.513999999999996
1145
+ - type: mrr_at_3
1146
+ value: 29.479
1147
+ - type: mrr_at_5
1148
+ value: 31.3
1149
+ - type: ndcg_at_1
1150
+ value: 22.606
1151
+ - type: ndcg_at_10
1152
+ value: 24.053
1153
+ - type: ndcg_at_100
1154
+ value: 30.258000000000003
1155
+ - type: ndcg_at_1000
1156
+ value: 33.516
1157
+ - type: ndcg_at_3
1158
+ value: 19.721
1159
+ - type: ndcg_at_5
1160
+ value: 21.144
1161
+ - type: precision_at_1
1162
+ value: 22.606
1163
+ - type: precision_at_10
1164
+ value: 7.55
1165
+ - type: precision_at_100
1166
+ value: 1.399
1167
+ - type: precision_at_1000
1168
+ value: 0.2
1169
+ - type: precision_at_3
1170
+ value: 14.701
1171
+ - type: precision_at_5
1172
+ value: 11.192
1173
+ - type: recall_at_1
1174
+ value: 10.079
1175
+ - type: recall_at_10
1176
+ value: 28.970000000000002
1177
+ - type: recall_at_100
1178
+ value: 50.805
1179
+ - type: recall_at_1000
1180
+ value: 69.378
1181
+ - type: recall_at_3
1182
+ value: 18.199
1183
+ - type: recall_at_5
1184
+ value: 22.442
1185
+ - task:
1186
+ type: Retrieval
1187
+ dataset:
1188
+ type: dbpedia-entity
1189
+ name: MTEB DBPedia
1190
+ config: default
1191
+ split: test
1192
+ revision: None
1193
+ metrics:
1194
+ - type: map_at_1
1195
+ value: 7.794
1196
+ - type: map_at_10
1197
+ value: 15.165999999999999
1198
+ - type: map_at_100
1199
+ value: 20.508000000000003
1200
+ - type: map_at_1000
1201
+ value: 21.809
1202
+ - type: map_at_3
1203
+ value: 11.568000000000001
1204
+ - type: map_at_5
1205
+ value: 13.059000000000001
1206
+ - type: mrr_at_1
1207
+ value: 56.49999999999999
1208
+ - type: mrr_at_10
1209
+ value: 65.90899999999999
1210
+ - type: mrr_at_100
1211
+ value: 66.352
1212
+ - type: mrr_at_1000
1213
+ value: 66.369
1214
+ - type: mrr_at_3
1215
+ value: 64.0
1216
+ - type: mrr_at_5
1217
+ value: 65.10000000000001
1218
+ - type: ndcg_at_1
1219
+ value: 44.25
1220
+ - type: ndcg_at_10
1221
+ value: 32.649
1222
+ - type: ndcg_at_100
1223
+ value: 36.668
1224
+ - type: ndcg_at_1000
1225
+ value: 43.918
1226
+ - type: ndcg_at_3
1227
+ value: 37.096000000000004
1228
+ - type: ndcg_at_5
1229
+ value: 34.048
1230
+ - type: precision_at_1
1231
+ value: 56.49999999999999
1232
+ - type: precision_at_10
1233
+ value: 25.45
1234
+ - type: precision_at_100
1235
+ value: 8.055
1236
+ - type: precision_at_1000
1237
+ value: 1.7489999999999999
1238
+ - type: precision_at_3
1239
+ value: 41.0
1240
+ - type: precision_at_5
1241
+ value: 32.85
1242
+ - type: recall_at_1
1243
+ value: 7.794
1244
+ - type: recall_at_10
1245
+ value: 20.101
1246
+ - type: recall_at_100
1247
+ value: 42.448
1248
+ - type: recall_at_1000
1249
+ value: 65.88000000000001
1250
+ - type: recall_at_3
1251
+ value: 12.753
1252
+ - type: recall_at_5
1253
+ value: 15.307
1254
+ - task:
1255
+ type: Classification
1256
+ dataset:
1257
+ type: mteb/emotion
1258
+ name: MTEB EmotionClassification
1259
+ config: default
1260
+ split: test
1261
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1262
+ metrics:
1263
+ - type: accuracy
1264
+ value: 44.01
1265
+ - type: f1
1266
+ value: 38.659680951114964
1267
+ - task:
1268
+ type: Retrieval
1269
+ dataset:
1270
+ type: fever
1271
+ name: MTEB FEVER
1272
+ config: default
1273
+ split: test
1274
+ revision: None
1275
+ metrics:
1276
+ - type: map_at_1
1277
+ value: 49.713
1278
+ - type: map_at_10
1279
+ value: 61.79
1280
+ - type: map_at_100
1281
+ value: 62.28
1282
+ - type: map_at_1000
1283
+ value: 62.297000000000004
1284
+ - type: map_at_3
1285
+ value: 59.361
1286
+ - type: map_at_5
1287
+ value: 60.92100000000001
1288
+ - type: mrr_at_1
1289
+ value: 53.405
1290
+ - type: mrr_at_10
1291
+ value: 65.79899999999999
1292
+ - type: mrr_at_100
1293
+ value: 66.219
1294
+ - type: mrr_at_1000
1295
+ value: 66.227
1296
+ - type: mrr_at_3
1297
+ value: 63.431000000000004
1298
+ - type: mrr_at_5
1299
+ value: 64.98
1300
+ - type: ndcg_at_1
1301
+ value: 53.405
1302
+ - type: ndcg_at_10
1303
+ value: 68.01899999999999
1304
+ - type: ndcg_at_100
1305
+ value: 70.197
1306
+ - type: ndcg_at_1000
1307
+ value: 70.571
1308
+ - type: ndcg_at_3
1309
+ value: 63.352
1310
+ - type: ndcg_at_5
1311
+ value: 66.018
1312
+ - type: precision_at_1
1313
+ value: 53.405
1314
+ - type: precision_at_10
1315
+ value: 9.119
1316
+ - type: precision_at_100
1317
+ value: 1.03
1318
+ - type: precision_at_1000
1319
+ value: 0.107
1320
+ - type: precision_at_3
1321
+ value: 25.602999999999998
1322
+ - type: precision_at_5
1323
+ value: 16.835
1324
+ - type: recall_at_1
1325
+ value: 49.713
1326
+ - type: recall_at_10
1327
+ value: 83.306
1328
+ - type: recall_at_100
1329
+ value: 92.92
1330
+ - type: recall_at_1000
1331
+ value: 95.577
1332
+ - type: recall_at_3
1333
+ value: 70.798
1334
+ - type: recall_at_5
1335
+ value: 77.254
1336
+ - task:
1337
+ type: Retrieval
1338
+ dataset:
1339
+ type: fiqa
1340
+ name: MTEB FiQA2018
1341
+ config: default
1342
+ split: test
1343
+ revision: None
1344
+ metrics:
1345
+ - type: map_at_1
1346
+ value: 15.310000000000002
1347
+ - type: map_at_10
1348
+ value: 26.204
1349
+ - type: map_at_100
1350
+ value: 27.932000000000002
1351
+ - type: map_at_1000
1352
+ value: 28.121000000000002
1353
+ - type: map_at_3
1354
+ value: 22.481
1355
+ - type: map_at_5
1356
+ value: 24.678
1357
+ - type: mrr_at_1
1358
+ value: 29.784
1359
+ - type: mrr_at_10
1360
+ value: 39.582
1361
+ - type: mrr_at_100
1362
+ value: 40.52
1363
+ - type: mrr_at_1000
1364
+ value: 40.568
1365
+ - type: mrr_at_3
1366
+ value: 37.114000000000004
1367
+ - type: mrr_at_5
1368
+ value: 38.596000000000004
1369
+ - type: ndcg_at_1
1370
+ value: 29.784
1371
+ - type: ndcg_at_10
1372
+ value: 33.432
1373
+ - type: ndcg_at_100
1374
+ value: 40.281
1375
+ - type: ndcg_at_1000
1376
+ value: 43.653999999999996
1377
+ - type: ndcg_at_3
1378
+ value: 29.612
1379
+ - type: ndcg_at_5
1380
+ value: 31.223
1381
+ - type: precision_at_1
1382
+ value: 29.784
1383
+ - type: precision_at_10
1384
+ value: 9.645
1385
+ - type: precision_at_100
1386
+ value: 1.645
1387
+ - type: precision_at_1000
1388
+ value: 0.22499999999999998
1389
+ - type: precision_at_3
1390
+ value: 20.165
1391
+ - type: precision_at_5
1392
+ value: 15.401000000000002
1393
+ - type: recall_at_1
1394
+ value: 15.310000000000002
1395
+ - type: recall_at_10
1396
+ value: 40.499
1397
+ - type: recall_at_100
1398
+ value: 66.643
1399
+ - type: recall_at_1000
1400
+ value: 87.059
1401
+ - type: recall_at_3
1402
+ value: 27.492
1403
+ - type: recall_at_5
1404
+ value: 33.748
1405
+ - task:
1406
+ type: Retrieval
1407
+ dataset:
1408
+ type: hotpotqa
1409
+ name: MTEB HotpotQA
1410
+ config: default
1411
+ split: test
1412
+ revision: None
1413
+ metrics:
1414
+ - type: map_at_1
1415
+ value: 33.599000000000004
1416
+ - type: map_at_10
1417
+ value: 47.347
1418
+ - type: map_at_100
1419
+ value: 48.191
1420
+ - type: map_at_1000
1421
+ value: 48.263
1422
+ - type: map_at_3
1423
+ value: 44.698
1424
+ - type: map_at_5
1425
+ value: 46.278999999999996
1426
+ - type: mrr_at_1
1427
+ value: 67.19800000000001
1428
+ - type: mrr_at_10
1429
+ value: 74.054
1430
+ - type: mrr_at_100
1431
+ value: 74.376
1432
+ - type: mrr_at_1000
1433
+ value: 74.392
1434
+ - type: mrr_at_3
1435
+ value: 72.849
1436
+ - type: mrr_at_5
1437
+ value: 73.643
1438
+ - type: ndcg_at_1
1439
+ value: 67.19800000000001
1440
+ - type: ndcg_at_10
1441
+ value: 56.482
1442
+ - type: ndcg_at_100
1443
+ value: 59.694
1444
+ - type: ndcg_at_1000
1445
+ value: 61.204
1446
+ - type: ndcg_at_3
1447
+ value: 52.43299999999999
1448
+ - type: ndcg_at_5
1449
+ value: 54.608000000000004
1450
+ - type: precision_at_1
1451
+ value: 67.19800000000001
1452
+ - type: precision_at_10
1453
+ value: 11.613999999999999
1454
+ - type: precision_at_100
1455
+ value: 1.415
1456
+ - type: precision_at_1000
1457
+ value: 0.16199999999999998
1458
+ - type: precision_at_3
1459
+ value: 32.726
1460
+ - type: precision_at_5
1461
+ value: 21.349999999999998
1462
+ - type: recall_at_1
1463
+ value: 33.599000000000004
1464
+ - type: recall_at_10
1465
+ value: 58.069
1466
+ - type: recall_at_100
1467
+ value: 70.736
1468
+ - type: recall_at_1000
1469
+ value: 80.804
1470
+ - type: recall_at_3
1471
+ value: 49.088
1472
+ - type: recall_at_5
1473
+ value: 53.376000000000005
1474
+ - task:
1475
+ type: Classification
1476
+ dataset:
1477
+ type: mteb/imdb
1478
+ name: MTEB ImdbClassification
1479
+ config: default
1480
+ split: test
1481
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1482
+ metrics:
1483
+ - type: accuracy
1484
+ value: 73.64359999999999
1485
+ - type: ap
1486
+ value: 67.54685976014599
1487
+ - type: f1
1488
+ value: 73.55148707559482
1489
+ - task:
1490
+ type: Retrieval
1491
+ dataset:
1492
+ type: msmarco
1493
+ name: MTEB MSMARCO
1494
+ config: default
1495
+ split: dev
1496
+ revision: None
1497
+ metrics:
1498
+ - type: map_at_1
1499
+ value: 19.502
1500
+ - type: map_at_10
1501
+ value: 30.816
1502
+ - type: map_at_100
1503
+ value: 32.007999999999996
1504
+ - type: map_at_1000
1505
+ value: 32.067
1506
+ - type: map_at_3
1507
+ value: 27.215
1508
+ - type: map_at_5
1509
+ value: 29.304000000000002
1510
+ - type: mrr_at_1
1511
+ value: 20.072000000000003
1512
+ - type: mrr_at_10
1513
+ value: 31.406
1514
+ - type: mrr_at_100
1515
+ value: 32.549
1516
+ - type: mrr_at_1000
1517
+ value: 32.602
1518
+ - type: mrr_at_3
1519
+ value: 27.839000000000002
1520
+ - type: mrr_at_5
1521
+ value: 29.926000000000002
1522
+ - type: ndcg_at_1
1523
+ value: 20.086000000000002
1524
+ - type: ndcg_at_10
1525
+ value: 37.282
1526
+ - type: ndcg_at_100
1527
+ value: 43.206
1528
+ - type: ndcg_at_1000
1529
+ value: 44.690000000000005
1530
+ - type: ndcg_at_3
1531
+ value: 29.932
1532
+ - type: ndcg_at_5
1533
+ value: 33.668
1534
+ - type: precision_at_1
1535
+ value: 20.086000000000002
1536
+ - type: precision_at_10
1537
+ value: 5.961
1538
+ - type: precision_at_100
1539
+ value: 0.898
1540
+ - type: precision_at_1000
1541
+ value: 0.10200000000000001
1542
+ - type: precision_at_3
1543
+ value: 12.856000000000002
1544
+ - type: precision_at_5
1545
+ value: 9.596
1546
+ - type: recall_at_1
1547
+ value: 19.502
1548
+ - type: recall_at_10
1549
+ value: 57.182
1550
+ - type: recall_at_100
1551
+ value: 84.952
1552
+ - type: recall_at_1000
1553
+ value: 96.34700000000001
1554
+ - type: recall_at_3
1555
+ value: 37.193
1556
+ - type: recall_at_5
1557
+ value: 46.157
1558
+ - task:
1559
+ type: Classification
1560
+ dataset:
1561
+ type: mteb/mtop_domain
1562
+ name: MTEB MTOPDomainClassification (en)
1563
+ config: en
1564
+ split: test
1565
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1566
+ metrics:
1567
+ - type: accuracy
1568
+ value: 93.96488828089375
1569
+ - type: f1
1570
+ value: 93.32119260543482
1571
+ - task:
1572
+ type: Classification
1573
+ dataset:
1574
+ type: mteb/mtop_intent
1575
+ name: MTEB MTOPIntentClassification (en)
1576
+ config: en
1577
+ split: test
1578
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1579
+ metrics:
1580
+ - type: accuracy
1581
+ value: 72.4965800273598
1582
+ - type: f1
1583
+ value: 49.34896217536082
1584
+ - task:
1585
+ type: Classification
1586
+ dataset:
1587
+ type: mteb/amazon_massive_intent
1588
+ name: MTEB MassiveIntentClassification (en)
1589
+ config: en
1590
+ split: test
1591
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1592
+ metrics:
1593
+ - type: accuracy
1594
+ value: 67.60928043039678
1595
+ - type: f1
1596
+ value: 64.34244712074538
1597
+ - task:
1598
+ type: Classification
1599
+ dataset:
1600
+ type: mteb/amazon_massive_scenario
1601
+ name: MTEB MassiveScenarioClassification (en)
1602
+ config: en
1603
+ split: test
1604
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1605
+ metrics:
1606
+ - type: accuracy
1607
+ value: 69.75453934095493
1608
+ - type: f1
1609
+ value: 68.39224867489249
1610
+ - task:
1611
+ type: Clustering
1612
+ dataset:
1613
+ type: mteb/medrxiv-clustering-p2p
1614
+ name: MTEB MedrxivClusteringP2P
1615
+ config: default
1616
+ split: test
1617
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1618
+ metrics:
1619
+ - type: v_measure
1620
+ value: 31.862573504920082
1621
+ - task:
1622
+ type: Clustering
1623
+ dataset:
1624
+ type: mteb/medrxiv-clustering-s2s
1625
+ name: MTEB MedrxivClusteringS2S
1626
+ config: default
1627
+ split: test
1628
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1629
+ metrics:
1630
+ - type: v_measure
1631
+ value: 27.511123551196803
1632
+ - task:
1633
+ type: Reranking
1634
+ dataset:
1635
+ type: mteb/mind_small
1636
+ name: MTEB MindSmallReranking
1637
+ config: default
1638
+ split: test
1639
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1640
+ metrics:
1641
+ - type: map
1642
+ value: 30.99145104942086
1643
+ - type: mrr
1644
+ value: 32.03606480418627
1645
+ - task:
1646
+ type: Retrieval
1647
+ dataset:
1648
+ type: nfcorpus
1649
+ name: MTEB NFCorpus
1650
+ config: default
1651
+ split: test
1652
+ revision: None
1653
+ metrics:
1654
+ - type: map_at_1
1655
+ value: 5.015
1656
+ - type: map_at_10
1657
+ value: 11.054
1658
+ - type: map_at_100
1659
+ value: 13.773
1660
+ - type: map_at_1000
1661
+ value: 15.082999999999998
1662
+ - type: map_at_3
1663
+ value: 8.253
1664
+ - type: map_at_5
1665
+ value: 9.508999999999999
1666
+ - type: mrr_at_1
1667
+ value: 42.105
1668
+ - type: mrr_at_10
1669
+ value: 50.44499999999999
1670
+ - type: mrr_at_100
1671
+ value: 51.080000000000005
1672
+ - type: mrr_at_1000
1673
+ value: 51.129999999999995
1674
+ - type: mrr_at_3
1675
+ value: 48.555
1676
+ - type: mrr_at_5
1677
+ value: 49.84
1678
+ - type: ndcg_at_1
1679
+ value: 40.402
1680
+ - type: ndcg_at_10
1681
+ value: 30.403000000000002
1682
+ - type: ndcg_at_100
1683
+ value: 28.216
1684
+ - type: ndcg_at_1000
1685
+ value: 37.021
1686
+ - type: ndcg_at_3
1687
+ value: 35.53
1688
+ - type: ndcg_at_5
1689
+ value: 33.202999999999996
1690
+ - type: precision_at_1
1691
+ value: 42.105
1692
+ - type: precision_at_10
1693
+ value: 22.353
1694
+ - type: precision_at_100
1695
+ value: 7.266
1696
+ - type: precision_at_1000
1697
+ value: 2.011
1698
+ - type: precision_at_3
1699
+ value: 32.921
1700
+ - type: precision_at_5
1701
+ value: 28.297
1702
+ - type: recall_at_1
1703
+ value: 5.015
1704
+ - type: recall_at_10
1705
+ value: 14.393
1706
+ - type: recall_at_100
1707
+ value: 28.893
1708
+ - type: recall_at_1000
1709
+ value: 60.18
1710
+ - type: recall_at_3
1711
+ value: 9.184000000000001
1712
+ - type: recall_at_5
1713
+ value: 11.39
1714
+ - task:
1715
+ type: Retrieval
1716
+ dataset:
1717
+ type: nq
1718
+ name: MTEB NQ
1719
+ config: default
1720
+ split: test
1721
+ revision: None
1722
+ metrics:
1723
+ - type: map_at_1
1724
+ value: 29.524
1725
+ - type: map_at_10
1726
+ value: 44.182
1727
+ - type: map_at_100
1728
+ value: 45.228
1729
+ - type: map_at_1000
1730
+ value: 45.265
1731
+ - type: map_at_3
1732
+ value: 39.978
1733
+ - type: map_at_5
1734
+ value: 42.482
1735
+ - type: mrr_at_1
1736
+ value: 33.256
1737
+ - type: mrr_at_10
1738
+ value: 46.661
1739
+ - type: mrr_at_100
1740
+ value: 47.47
1741
+ - type: mrr_at_1000
1742
+ value: 47.496
1743
+ - type: mrr_at_3
1744
+ value: 43.187999999999995
1745
+ - type: mrr_at_5
1746
+ value: 45.330999999999996
1747
+ - type: ndcg_at_1
1748
+ value: 33.227000000000004
1749
+ - type: ndcg_at_10
1750
+ value: 51.589
1751
+ - type: ndcg_at_100
1752
+ value: 56.043
1753
+ - type: ndcg_at_1000
1754
+ value: 56.937000000000005
1755
+ - type: ndcg_at_3
1756
+ value: 43.751
1757
+ - type: ndcg_at_5
1758
+ value: 47.937000000000005
1759
+ - type: precision_at_1
1760
+ value: 33.227000000000004
1761
+ - type: precision_at_10
1762
+ value: 8.556999999999999
1763
+ - type: precision_at_100
1764
+ value: 1.103
1765
+ - type: precision_at_1000
1766
+ value: 0.11900000000000001
1767
+ - type: precision_at_3
1768
+ value: 19.921
1769
+ - type: precision_at_5
1770
+ value: 14.396999999999998
1771
+ - type: recall_at_1
1772
+ value: 29.524
1773
+ - type: recall_at_10
1774
+ value: 71.615
1775
+ - type: recall_at_100
1776
+ value: 91.056
1777
+ - type: recall_at_1000
1778
+ value: 97.72800000000001
1779
+ - type: recall_at_3
1780
+ value: 51.451
1781
+ - type: recall_at_5
1782
+ value: 61.119
1783
+ - task:
1784
+ type: Retrieval
1785
+ dataset:
1786
+ type: quora
1787
+ name: MTEB QuoraRetrieval
1788
+ config: default
1789
+ split: test
1790
+ revision: None
1791
+ metrics:
1792
+ - type: map_at_1
1793
+ value: 69.596
1794
+ - type: map_at_10
1795
+ value: 83.281
1796
+ - type: map_at_100
1797
+ value: 83.952
1798
+ - type: map_at_1000
1799
+ value: 83.97200000000001
1800
+ - type: map_at_3
1801
+ value: 80.315
1802
+ - type: map_at_5
1803
+ value: 82.223
1804
+ - type: mrr_at_1
1805
+ value: 80.17
1806
+ - type: mrr_at_10
1807
+ value: 86.522
1808
+ - type: mrr_at_100
1809
+ value: 86.644
1810
+ - type: mrr_at_1000
1811
+ value: 86.64500000000001
1812
+ - type: mrr_at_3
1813
+ value: 85.438
1814
+ - type: mrr_at_5
1815
+ value: 86.21799999999999
1816
+ - type: ndcg_at_1
1817
+ value: 80.19
1818
+ - type: ndcg_at_10
1819
+ value: 87.19
1820
+ - type: ndcg_at_100
1821
+ value: 88.567
1822
+ - type: ndcg_at_1000
1823
+ value: 88.70400000000001
1824
+ - type: ndcg_at_3
1825
+ value: 84.17999999999999
1826
+ - type: ndcg_at_5
1827
+ value: 85.931
1828
+ - type: precision_at_1
1829
+ value: 80.19
1830
+ - type: precision_at_10
1831
+ value: 13.209000000000001
1832
+ - type: precision_at_100
1833
+ value: 1.518
1834
+ - type: precision_at_1000
1835
+ value: 0.157
1836
+ - type: precision_at_3
1837
+ value: 36.717
1838
+ - type: precision_at_5
1839
+ value: 24.248
1840
+ - type: recall_at_1
1841
+ value: 69.596
1842
+ - type: recall_at_10
1843
+ value: 94.533
1844
+ - type: recall_at_100
1845
+ value: 99.322
1846
+ - type: recall_at_1000
1847
+ value: 99.965
1848
+ - type: recall_at_3
1849
+ value: 85.911
1850
+ - type: recall_at_5
1851
+ value: 90.809
1852
+ - task:
1853
+ type: Clustering
1854
+ dataset:
1855
+ type: mteb/reddit-clustering
1856
+ name: MTEB RedditClustering
1857
+ config: default
1858
+ split: test
1859
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1860
+ metrics:
1861
+ - type: v_measure
1862
+ value: 49.27650627571912
1863
+ - task:
1864
+ type: Clustering
1865
+ dataset:
1866
+ type: mteb/reddit-clustering-p2p
1867
+ name: MTEB RedditClusteringP2P
1868
+ config: default
1869
+ split: test
1870
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1871
+ metrics:
1872
+ - type: v_measure
1873
+ value: 57.08550946534183
1874
+ - task:
1875
+ type: Retrieval
1876
+ dataset:
1877
+ type: scidocs
1878
+ name: MTEB SCIDOCS
1879
+ config: default
1880
+ split: test
1881
+ revision: None
1882
+ metrics:
1883
+ - type: map_at_1
1884
+ value: 4.568
1885
+ - type: map_at_10
1886
+ value: 10.862
1887
+ - type: map_at_100
1888
+ value: 12.757
1889
+ - type: map_at_1000
1890
+ value: 13.031
1891
+ - type: map_at_3
1892
+ value: 7.960000000000001
1893
+ - type: map_at_5
1894
+ value: 9.337
1895
+ - type: mrr_at_1
1896
+ value: 22.5
1897
+ - type: mrr_at_10
1898
+ value: 32.6
1899
+ - type: mrr_at_100
1900
+ value: 33.603
1901
+ - type: mrr_at_1000
1902
+ value: 33.672000000000004
1903
+ - type: mrr_at_3
1904
+ value: 29.299999999999997
1905
+ - type: mrr_at_5
1906
+ value: 31.25
1907
+ - type: ndcg_at_1
1908
+ value: 22.5
1909
+ - type: ndcg_at_10
1910
+ value: 18.605
1911
+ - type: ndcg_at_100
1912
+ value: 26.029999999999998
1913
+ - type: ndcg_at_1000
1914
+ value: 31.256
1915
+ - type: ndcg_at_3
1916
+ value: 17.873
1917
+ - type: ndcg_at_5
1918
+ value: 15.511
1919
+ - type: precision_at_1
1920
+ value: 22.5
1921
+ - type: precision_at_10
1922
+ value: 9.58
1923
+ - type: precision_at_100
1924
+ value: 2.033
1925
+ - type: precision_at_1000
1926
+ value: 0.33
1927
+ - type: precision_at_3
1928
+ value: 16.633
1929
+ - type: precision_at_5
1930
+ value: 13.54
1931
+ - type: recall_at_1
1932
+ value: 4.568
1933
+ - type: recall_at_10
1934
+ value: 19.402
1935
+ - type: recall_at_100
1936
+ value: 41.277
1937
+ - type: recall_at_1000
1938
+ value: 66.963
1939
+ - type: recall_at_3
1940
+ value: 10.112
1941
+ - type: recall_at_5
1942
+ value: 13.712
1943
+ - task:
1944
+ type: STS
1945
+ dataset:
1946
+ type: mteb/sickr-sts
1947
+ name: MTEB SICK-R
1948
+ config: default
1949
+ split: test
1950
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1951
+ metrics:
1952
+ - type: cos_sim_pearson
1953
+ value: 83.31992291680787
1954
+ - type: cos_sim_spearman
1955
+ value: 76.7212346922664
1956
+ - type: euclidean_pearson
1957
+ value: 80.42189271706478
1958
+ - type: euclidean_spearman
1959
+ value: 76.7212342532493
1960
+ - type: manhattan_pearson
1961
+ value: 80.33171093031578
1962
+ - type: manhattan_spearman
1963
+ value: 76.63192883074694
1964
+ - task:
1965
+ type: STS
1966
+ dataset:
1967
+ type: mteb/sts12-sts
1968
+ name: MTEB STS12
1969
+ config: default
1970
+ split: test
1971
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1972
+ metrics:
1973
+ - type: cos_sim_pearson
1974
+ value: 83.16654278886763
1975
+ - type: cos_sim_spearman
1976
+ value: 73.66390263429565
1977
+ - type: euclidean_pearson
1978
+ value: 79.7485360086639
1979
+ - type: euclidean_spearman
1980
+ value: 73.66389870373436
1981
+ - type: manhattan_pearson
1982
+ value: 79.73652237443706
1983
+ - type: manhattan_spearman
1984
+ value: 73.65296117151647
1985
+ - task:
1986
+ type: STS
1987
+ dataset:
1988
+ type: mteb/sts13-sts
1989
+ name: MTEB STS13
1990
+ config: default
1991
+ split: test
1992
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1993
+ metrics:
1994
+ - type: cos_sim_pearson
1995
+ value: 82.40389689929246
1996
+ - type: cos_sim_spearman
1997
+ value: 83.29727595993955
1998
+ - type: euclidean_pearson
1999
+ value: 82.23970587854079
2000
+ - type: euclidean_spearman
2001
+ value: 83.29727595993955
2002
+ - type: manhattan_pearson
2003
+ value: 82.18823600831897
2004
+ - type: manhattan_spearman
2005
+ value: 83.20746192209594
2006
+ - task:
2007
+ type: STS
2008
+ dataset:
2009
+ type: mteb/sts14-sts
2010
+ name: MTEB STS14
2011
+ config: default
2012
+ split: test
2013
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2014
+ metrics:
2015
+ - type: cos_sim_pearson
2016
+ value: 81.73505246913413
2017
+ - type: cos_sim_spearman
2018
+ value: 79.1686548248754
2019
+ - type: euclidean_pearson
2020
+ value: 80.48889135993412
2021
+ - type: euclidean_spearman
2022
+ value: 79.16864112930354
2023
+ - type: manhattan_pearson
2024
+ value: 80.40720651057302
2025
+ - type: manhattan_spearman
2026
+ value: 79.0640155089286
2027
+ - task:
2028
+ type: STS
2029
+ dataset:
2030
+ type: mteb/sts15-sts
2031
+ name: MTEB STS15
2032
+ config: default
2033
+ split: test
2034
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2035
+ metrics:
2036
+ - type: cos_sim_pearson
2037
+ value: 86.3953512879065
2038
+ - type: cos_sim_spearman
2039
+ value: 87.29947322714338
2040
+ - type: euclidean_pearson
2041
+ value: 86.59759438529645
2042
+ - type: euclidean_spearman
2043
+ value: 87.29947511092824
2044
+ - type: manhattan_pearson
2045
+ value: 86.52097806169155
2046
+ - type: manhattan_spearman
2047
+ value: 87.22987242146534
2048
+ - task:
2049
+ type: STS
2050
+ dataset:
2051
+ type: mteb/sts16-sts
2052
+ name: MTEB STS16
2053
+ config: default
2054
+ split: test
2055
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2056
+ metrics:
2057
+ - type: cos_sim_pearson
2058
+ value: 82.48565753792056
2059
+ - type: cos_sim_spearman
2060
+ value: 83.6049720319893
2061
+ - type: euclidean_pearson
2062
+ value: 82.56452023172913
2063
+ - type: euclidean_spearman
2064
+ value: 83.60490168191697
2065
+ - type: manhattan_pearson
2066
+ value: 82.58079941137872
2067
+ - type: manhattan_spearman
2068
+ value: 83.60975807374051
2069
+ - task:
2070
+ type: STS
2071
+ dataset:
2072
+ type: mteb/sts17-crosslingual-sts
2073
+ name: MTEB STS17 (en-en)
2074
+ config: en-en
2075
+ split: test
2076
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2077
+ metrics:
2078
+ - type: cos_sim_pearson
2079
+ value: 88.18239976618212
2080
+ - type: cos_sim_spearman
2081
+ value: 88.23061724730616
2082
+ - type: euclidean_pearson
2083
+ value: 87.78482472776658
2084
+ - type: euclidean_spearman
2085
+ value: 88.23061724730616
2086
+ - type: manhattan_pearson
2087
+ value: 87.75059641730239
2088
+ - type: manhattan_spearman
2089
+ value: 88.22527413524622
2090
+ - task:
2091
+ type: STS
2092
+ dataset:
2093
+ type: mteb/sts22-crosslingual-sts
2094
+ name: MTEB STS22 (en)
2095
+ config: en
2096
+ split: test
2097
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2098
+ metrics:
2099
+ - type: cos_sim_pearson
2100
+ value: 63.42816418706765
2101
+ - type: cos_sim_spearman
2102
+ value: 63.4569864520124
2103
+ - type: euclidean_pearson
2104
+ value: 64.35405409953853
2105
+ - type: euclidean_spearman
2106
+ value: 63.4569864520124
2107
+ - type: manhattan_pearson
2108
+ value: 63.96649236073056
2109
+ - type: manhattan_spearman
2110
+ value: 63.01448583722708
2111
+ - task:
2112
+ type: STS
2113
+ dataset:
2114
+ type: mteb/stsbenchmark-sts
2115
+ name: MTEB STSBenchmark
2116
+ config: default
2117
+ split: test
2118
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2119
+ metrics:
2120
+ - type: cos_sim_pearson
2121
+ value: 83.41659638047614
2122
+ - type: cos_sim_spearman
2123
+ value: 84.03893866106175
2124
+ - type: euclidean_pearson
2125
+ value: 84.2251203953798
2126
+ - type: euclidean_spearman
2127
+ value: 84.03893866106175
2128
+ - type: manhattan_pearson
2129
+ value: 84.22733643205514
2130
+ - type: manhattan_spearman
2131
+ value: 84.06504411263612
2132
+ - task:
2133
+ type: Reranking
2134
+ dataset:
2135
+ type: mteb/scidocs-reranking
2136
+ name: MTEB SciDocsRR
2137
+ config: default
2138
+ split: test
2139
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2140
+ metrics:
2141
+ - type: map
2142
+ value: 79.75608022582414
2143
+ - type: mrr
2144
+ value: 94.0947732369301
2145
+ - task:
2146
+ type: Retrieval
2147
+ dataset:
2148
+ type: scifact
2149
+ name: MTEB SciFact
2150
+ config: default
2151
+ split: test
2152
+ revision: None
2153
+ metrics:
2154
+ - type: map_at_1
2155
+ value: 50.161
2156
+ - type: map_at_10
2157
+ value: 59.458999999999996
2158
+ - type: map_at_100
2159
+ value: 60.156
2160
+ - type: map_at_1000
2161
+ value: 60.194
2162
+ - type: map_at_3
2163
+ value: 56.45400000000001
2164
+ - type: map_at_5
2165
+ value: 58.165
2166
+ - type: mrr_at_1
2167
+ value: 53.333
2168
+ - type: mrr_at_10
2169
+ value: 61.050000000000004
2170
+ - type: mrr_at_100
2171
+ value: 61.586
2172
+ - type: mrr_at_1000
2173
+ value: 61.624
2174
+ - type: mrr_at_3
2175
+ value: 58.889
2176
+ - type: mrr_at_5
2177
+ value: 60.122
2178
+ - type: ndcg_at_1
2179
+ value: 53.333
2180
+ - type: ndcg_at_10
2181
+ value: 63.888999999999996
2182
+ - type: ndcg_at_100
2183
+ value: 66.963
2184
+ - type: ndcg_at_1000
2185
+ value: 68.062
2186
+ - type: ndcg_at_3
2187
+ value: 59.01
2188
+ - type: ndcg_at_5
2189
+ value: 61.373999999999995
2190
+ - type: precision_at_1
2191
+ value: 53.333
2192
+ - type: precision_at_10
2193
+ value: 8.633000000000001
2194
+ - type: precision_at_100
2195
+ value: 1.027
2196
+ - type: precision_at_1000
2197
+ value: 0.11199999999999999
2198
+ - type: precision_at_3
2199
+ value: 23.111
2200
+ - type: precision_at_5
2201
+ value: 15.467
2202
+ - type: recall_at_1
2203
+ value: 50.161
2204
+ - type: recall_at_10
2205
+ value: 75.922
2206
+ - type: recall_at_100
2207
+ value: 90.0
2208
+ - type: recall_at_1000
2209
+ value: 98.667
2210
+ - type: recall_at_3
2211
+ value: 62.90599999999999
2212
+ - type: recall_at_5
2213
+ value: 68.828
2214
+ - task:
2215
+ type: PairClassification
2216
+ dataset:
2217
+ type: mteb/sprintduplicatequestions-pairclassification
2218
+ name: MTEB SprintDuplicateQuestions
2219
+ config: default
2220
+ split: test
2221
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2222
+ metrics:
2223
+ - type: cos_sim_accuracy
2224
+ value: 99.81188118811882
2225
+ - type: cos_sim_ap
2226
+ value: 95.11619225962413
2227
+ - type: cos_sim_f1
2228
+ value: 90.35840484603736
2229
+ - type: cos_sim_precision
2230
+ value: 91.23343527013252
2231
+ - type: cos_sim_recall
2232
+ value: 89.5
2233
+ - type: dot_accuracy
2234
+ value: 99.81188118811882
2235
+ - type: dot_ap
2236
+ value: 95.11619225962413
2237
+ - type: dot_f1
2238
+ value: 90.35840484603736
2239
+ - type: dot_precision
2240
+ value: 91.23343527013252
2241
+ - type: dot_recall
2242
+ value: 89.5
2243
+ - type: euclidean_accuracy
2244
+ value: 99.81188118811882
2245
+ - type: euclidean_ap
2246
+ value: 95.11619225962413
2247
+ - type: euclidean_f1
2248
+ value: 90.35840484603736
2249
+ - type: euclidean_precision
2250
+ value: 91.23343527013252
2251
+ - type: euclidean_recall
2252
+ value: 89.5
2253
+ - type: manhattan_accuracy
2254
+ value: 99.80891089108911
2255
+ - type: manhattan_ap
2256
+ value: 95.07294266220966
2257
+ - type: manhattan_f1
2258
+ value: 90.21794221996959
2259
+ - type: manhattan_precision
2260
+ value: 91.46968139773895
2261
+ - type: manhattan_recall
2262
+ value: 89.0
2263
+ - type: max_accuracy
2264
+ value: 99.81188118811882
2265
+ - type: max_ap
2266
+ value: 95.11619225962413
2267
+ - type: max_f1
2268
+ value: 90.35840484603736
2269
+ - task:
2270
+ type: Clustering
2271
+ dataset:
2272
+ type: mteb/stackexchange-clustering
2273
+ name: MTEB StackExchangeClustering
2274
+ config: default
2275
+ split: test
2276
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2277
+ metrics:
2278
+ - type: v_measure
2279
+ value: 55.3481874105239
2280
+ - task:
2281
+ type: Clustering
2282
+ dataset:
2283
+ type: mteb/stackexchange-clustering-p2p
2284
+ name: MTEB StackExchangeClusteringP2P
2285
+ config: default
2286
+ split: test
2287
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2288
+ metrics:
2289
+ - type: v_measure
2290
+ value: 34.421291695525
2291
+ - task:
2292
+ type: Reranking
2293
+ dataset:
2294
+ type: mteb/stackoverflowdupquestions-reranking
2295
+ name: MTEB StackOverflowDupQuestions
2296
+ config: default
2297
+ split: test
2298
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2299
+ metrics:
2300
+ - type: map
2301
+ value: 49.98746633276634
2302
+ - type: mrr
2303
+ value: 50.63143249724133
2304
+ - task:
2305
+ type: Summarization
2306
+ dataset:
2307
+ type: mteb/summeval
2308
+ name: MTEB SummEval
2309
+ config: default
2310
+ split: test
2311
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2312
+ metrics:
2313
+ - type: cos_sim_pearson
2314
+ value: 31.009961979844036
2315
+ - type: cos_sim_spearman
2316
+ value: 30.558416108881044
2317
+ - type: dot_pearson
2318
+ value: 31.009964941134253
2319
+ - type: dot_spearman
2320
+ value: 30.545760761761393
2321
+ - task:
2322
+ type: Retrieval
2323
+ dataset:
2324
+ type: trec-covid
2325
+ name: MTEB TRECCOVID
2326
+ config: default
2327
+ split: test
2328
+ revision: None
2329
+ metrics:
2330
+ - type: map_at_1
2331
+ value: 0.207
2332
+ - type: map_at_10
2333
+ value: 1.6
2334
+ - type: map_at_100
2335
+ value: 8.594
2336
+ - type: map_at_1000
2337
+ value: 20.213
2338
+ - type: map_at_3
2339
+ value: 0.585
2340
+ - type: map_at_5
2341
+ value: 0.9039999999999999
2342
+ - type: mrr_at_1
2343
+ value: 78.0
2344
+ - type: mrr_at_10
2345
+ value: 87.4
2346
+ - type: mrr_at_100
2347
+ value: 87.4
2348
+ - type: mrr_at_1000
2349
+ value: 87.4
2350
+ - type: mrr_at_3
2351
+ value: 86.667
2352
+ - type: mrr_at_5
2353
+ value: 87.06700000000001
2354
+ - type: ndcg_at_1
2355
+ value: 73.0
2356
+ - type: ndcg_at_10
2357
+ value: 65.18
2358
+ - type: ndcg_at_100
2359
+ value: 49.631
2360
+ - type: ndcg_at_1000
2361
+ value: 43.498999999999995
2362
+ - type: ndcg_at_3
2363
+ value: 71.83800000000001
2364
+ - type: ndcg_at_5
2365
+ value: 69.271
2366
+ - type: precision_at_1
2367
+ value: 78.0
2368
+ - type: precision_at_10
2369
+ value: 69.19999999999999
2370
+ - type: precision_at_100
2371
+ value: 50.980000000000004
2372
+ - type: precision_at_1000
2373
+ value: 19.426
2374
+ - type: precision_at_3
2375
+ value: 77.333
2376
+ - type: precision_at_5
2377
+ value: 74.0
2378
+ - type: recall_at_1
2379
+ value: 0.207
2380
+ - type: recall_at_10
2381
+ value: 1.822
2382
+ - type: recall_at_100
2383
+ value: 11.849
2384
+ - type: recall_at_1000
2385
+ value: 40.492
2386
+ - type: recall_at_3
2387
+ value: 0.622
2388
+ - type: recall_at_5
2389
+ value: 0.9809999999999999
2390
+ - task:
2391
+ type: Retrieval
2392
+ dataset:
2393
+ type: webis-touche2020
2394
+ name: MTEB Touche2020
2395
+ config: default
2396
+ split: test
2397
+ revision: None
2398
+ metrics:
2399
+ - type: map_at_1
2400
+ value: 2.001
2401
+ - type: map_at_10
2402
+ value: 10.376000000000001
2403
+ - type: map_at_100
2404
+ value: 16.936999999999998
2405
+ - type: map_at_1000
2406
+ value: 18.615000000000002
2407
+ - type: map_at_3
2408
+ value: 5.335999999999999
2409
+ - type: map_at_5
2410
+ value: 7.374
2411
+ - type: mrr_at_1
2412
+ value: 20.408
2413
+ - type: mrr_at_10
2414
+ value: 38.29
2415
+ - type: mrr_at_100
2416
+ value: 39.33
2417
+ - type: mrr_at_1000
2418
+ value: 39.347
2419
+ - type: mrr_at_3
2420
+ value: 32.993
2421
+ - type: mrr_at_5
2422
+ value: 36.973
2423
+ - type: ndcg_at_1
2424
+ value: 17.347
2425
+ - type: ndcg_at_10
2426
+ value: 23.515
2427
+ - type: ndcg_at_100
2428
+ value: 37.457
2429
+ - type: ndcg_at_1000
2430
+ value: 49.439
2431
+ - type: ndcg_at_3
2432
+ value: 22.762999999999998
2433
+ - type: ndcg_at_5
2434
+ value: 22.622
2435
+ - type: precision_at_1
2436
+ value: 20.408
2437
+ - type: precision_at_10
2438
+ value: 22.448999999999998
2439
+ - type: precision_at_100
2440
+ value: 8.184
2441
+ - type: precision_at_1000
2442
+ value: 1.608
2443
+ - type: precision_at_3
2444
+ value: 25.85
2445
+ - type: precision_at_5
2446
+ value: 25.306
2447
+ - type: recall_at_1
2448
+ value: 2.001
2449
+ - type: recall_at_10
2450
+ value: 17.422
2451
+ - type: recall_at_100
2452
+ value: 51.532999999999994
2453
+ - type: recall_at_1000
2454
+ value: 87.466
2455
+ - type: recall_at_3
2456
+ value: 6.861000000000001
2457
+ - type: recall_at_5
2458
+ value: 10.502
2459
+ - task:
2460
+ type: Classification
2461
+ dataset:
2462
+ type: mteb/toxic_conversations_50k
2463
+ name: MTEB ToxicConversationsClassification
2464
+ config: default
2465
+ split: test
2466
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2467
+ metrics:
2468
+ - type: accuracy
2469
+ value: 71.54419999999999
2470
+ - type: ap
2471
+ value: 14.372170450843907
2472
+ - type: f1
2473
+ value: 54.94420257390529
2474
+ - task:
2475
+ type: Classification
2476
+ dataset:
2477
+ type: mteb/tweet_sentiment_extraction
2478
+ name: MTEB TweetSentimentExtractionClassification
2479
+ config: default
2480
+ split: test
2481
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2482
+ metrics:
2483
+ - type: accuracy
2484
+ value: 59.402942840973395
2485
+ - type: f1
2486
+ value: 59.4166538875571
2487
+ - task:
2488
+ type: Clustering
2489
+ dataset:
2490
+ type: mteb/twentynewsgroups-clustering
2491
+ name: MTEB TwentyNewsgroupsClustering
2492
+ config: default
2493
+ split: test
2494
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2495
+ metrics:
2496
+ - type: v_measure
2497
+ value: 41.569064336457906
2498
+ - task:
2499
+ type: PairClassification
2500
+ dataset:
2501
+ type: mteb/twittersemeval2015-pairclassification
2502
+ name: MTEB TwitterSemEval2015
2503
+ config: default
2504
+ split: test
2505
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2506
+ metrics:
2507
+ - type: cos_sim_accuracy
2508
+ value: 85.31322644096085
2509
+ - type: cos_sim_ap
2510
+ value: 72.14518894837381
2511
+ - type: cos_sim_f1
2512
+ value: 66.67489813557229
2513
+ - type: cos_sim_precision
2514
+ value: 62.65954977953121
2515
+ - type: cos_sim_recall
2516
+ value: 71.2401055408971
2517
+ - type: dot_accuracy
2518
+ value: 85.31322644096085
2519
+ - type: dot_ap
2520
+ value: 72.14521480685293
2521
+ - type: dot_f1
2522
+ value: 66.67489813557229
2523
+ - type: dot_precision
2524
+ value: 62.65954977953121
2525
+ - type: dot_recall
2526
+ value: 71.2401055408971
2527
+ - type: euclidean_accuracy
2528
+ value: 85.31322644096085
2529
+ - type: euclidean_ap
2530
+ value: 72.14520820485349
2531
+ - type: euclidean_f1
2532
+ value: 66.67489813557229
2533
+ - type: euclidean_precision
2534
+ value: 62.65954977953121
2535
+ - type: euclidean_recall
2536
+ value: 71.2401055408971
2537
+ - type: manhattan_accuracy
2538
+ value: 85.21785778148656
2539
+ - type: manhattan_ap
2540
+ value: 72.01177147657364
2541
+ - type: manhattan_f1
2542
+ value: 66.62594673833374
2543
+ - type: manhattan_precision
2544
+ value: 62.0336669699727
2545
+ - type: manhattan_recall
2546
+ value: 71.95250659630607
2547
+ - type: max_accuracy
2548
+ value: 85.31322644096085
2549
+ - type: max_ap
2550
+ value: 72.14521480685293
2551
+ - type: max_f1
2552
+ value: 66.67489813557229
2553
+ - task:
2554
+ type: PairClassification
2555
+ dataset:
2556
+ type: mteb/twitterurlcorpus-pairclassification
2557
+ name: MTEB TwitterURLCorpus
2558
+ config: default
2559
+ split: test
2560
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2561
+ metrics:
2562
+ - type: cos_sim_accuracy
2563
+ value: 89.12756626693057
2564
+ - type: cos_sim_ap
2565
+ value: 86.05430786440826
2566
+ - type: cos_sim_f1
2567
+ value: 78.27759692216631
2568
+ - type: cos_sim_precision
2569
+ value: 75.33466248931929
2570
+ - type: cos_sim_recall
2571
+ value: 81.45980905451185
2572
+ - type: dot_accuracy
2573
+ value: 89.12950673341872
2574
+ - type: dot_ap
2575
+ value: 86.05431161145492
2576
+ - type: dot_f1
2577
+ value: 78.27759692216631
2578
+ - type: dot_precision
2579
+ value: 75.33466248931929
2580
+ - type: dot_recall
2581
+ value: 81.45980905451185
2582
+ - type: euclidean_accuracy
2583
+ value: 89.12756626693057
2584
+ - type: euclidean_ap
2585
+ value: 86.05431303247397
2586
+ - type: euclidean_f1
2587
+ value: 78.27759692216631
2588
+ - type: euclidean_precision
2589
+ value: 75.33466248931929
2590
+ - type: euclidean_recall
2591
+ value: 81.45980905451185
2592
+ - type: manhattan_accuracy
2593
+ value: 89.04994760740482
2594
+ - type: manhattan_ap
2595
+ value: 86.00860610892074
2596
+ - type: manhattan_f1
2597
+ value: 78.1846776005392
2598
+ - type: manhattan_precision
2599
+ value: 76.10438839480975
2600
+ - type: manhattan_recall
2601
+ value: 80.3818909762858
2602
+ - type: max_accuracy
2603
+ value: 89.12950673341872
2604
+ - type: max_ap
2605
+ value: 86.05431303247397
2606
+ - type: max_f1
2607
+ value: 78.27759692216631
2608
  ---
2609
  <!-- TODO: add evaluation results here -->
2610
  <br><br>