File size: 33,017 Bytes
2e3ebcb e3681c2 2e3ebcb e3681c2 2e3ebcb e860caa 2e3ebcb 76fc218 2e3ebcb e3681c2 2e3ebcb 362ef00 76fc218 65e9690 76fc218 7c7eafb 76fc218 7c7eafb 76fc218 2e3ebcb 76fc218 362ef00 76fc218 e860caa 2e3ebcb e3681c2 2e3ebcb e3681c2 2e3ebcb e860caa 362ef00 76fc218 65e9690 76fc218 7c7eafb 76fc218 362ef00 76fc218 2e3ebcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
# Copyright (c) 2023, Tri Dao.
# Adapted from https://github.com/Dao-AILab/flash-attention/pull/556
import math
from functools import partial
import torch
import torch.nn as nn
from einops import rearrange, repeat
try:
from flash_attn import (
flash_attn_kvpacked_func,
flash_attn_qkvpacked_func,
flash_attn_varlen_kvpacked_func,
flash_attn_varlen_qkvpacked_func,
flash_attn_with_kvcache,
)
except ImportError:
flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None
flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None
flash_attn_with_kvcache = None
try:
from flash_attn.ops.fused_dense import ColumnParallelLinear, FusedDense, RowParallelLinear
except ImportError:
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
from .rotary import RotaryEmbedding
# From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
def get_alibi_slopes(nheads):
def get_slopes_power_of_2(nheads):
start = 2 ** (-(2 ** -(math.log2(nheads) - 3)))
ratio = start
return [start * ratio**i for i in range(nheads)]
if math.log2(nheads).is_integer():
return get_slopes_power_of_2(nheads)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(nheads))
return (
get_slopes_power_of_2(closest_power_of_2)
+ get_alibi_slopes(2 * closest_power_of_2)[0::2][: nheads - closest_power_of_2]
)
class FlashSelfAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(
self,
causal=False,
softmax_scale=None,
attention_dropout=0.0,
window_size=(-1, -1),
alibi_slopes=None,
deterministic=False,
):
super().__init__()
assert flash_attn_varlen_qkvpacked_func is not None, "FlashAttention is not installed"
assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
self.window_size = window_size
self.deterministic = deterministic
def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value.
If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
(total, 3, H, D), where total is the sum of the sequence lengths in the batch.
causal: if passed, will override self.causal
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into qkv.
max_seqlen: int. Maximum sequence length in the batch.
Returns:
--------
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
else (B, S, H, D).
"""
assert qkv.dtype in [torch.float16, torch.bfloat16]
assert qkv.is_cuda
causal = self.causal if causal is None else causal
unpadded = cu_seqlens is not None
if self.alibi_slopes is not None:
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
if unpadded:
assert cu_seqlens.dtype == torch.int32
assert max_seqlen is not None
assert isinstance(max_seqlen, int)
return flash_attn_varlen_qkvpacked_func(
qkv,
cu_seqlens,
max_seqlen,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
alibi_slopes=self.alibi_slopes,
window_size=self.window_size,
deterministic=self.deterministic,
)
else:
return flash_attn_qkvpacked_func(
qkv,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
alibi_slopes=self.alibi_slopes,
window_size=self.window_size,
deterministic=self.deterministic,
)
class FlashCrossAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(
self,
causal=False,
softmax_scale=None,
attention_dropout=0.0,
alibi_slopes=None,
window_size=(-1, -1),
deterministic=False,
):
super().__init__()
assert flash_attn_varlen_kvpacked_func is not None, "FlashAttention is not installed"
assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
self.window_size = window_size
self.deterministic = deterministic
def forward(
self,
q,
kv,
causal=None,
cu_seqlens=None,
max_seqlen=None,
cu_seqlens_k=None,
max_seqlen_k=None,
):
"""Implements the multihead softmax attention.
Arguments
---------
q: The tensor containing the query. (B, Sq, H, D)
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
causal: if passed, will override self.causal
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
max_seqlen: int. Maximum sequence length in the batch of q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_k: int. Maximum sequence length in the batch of k and v.
"""
assert q.dtype in [torch.float16, torch.bfloat16]
assert q.is_cuda and kv.is_cuda
causal = self.causal if causal is None else causal
unpadded = cu_seqlens is not None
if self.alibi_slopes is not None:
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
if unpadded:
assert cu_seqlens.dtype == torch.int32
assert max_seqlen is not None
assert isinstance(max_seqlen, int)
assert cu_seqlens_k is not None
assert cu_seqlens_k.dtype == torch.int32
assert max_seqlen_k is not None
assert isinstance(max_seqlen, int)
return flash_attn_varlen_kvpacked_func(
q,
kv,
cu_seqlens,
cu_seqlens_k,
max_seqlen,
max_seqlen_k,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
alibi_slopes=self.alibi_slopes,
window_size=self.window_size,
deterministic=self.deterministic,
)
else:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
return flash_attn_kvpacked_func(
q,
kv,
self.drop.p if self.training else 0.0,
causal=causal,
softmax_scale=self.softmax_scale,
alibi_slopes=self.alibi_slopes,
window_size=self.window_size,
deterministic=self.deterministic,
)
class SelfAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(self, qkv, causal=None, key_padding_mask=None):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
causal: if passed, will override self.causal
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
False means to mask out. (B, S)
"""
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
causal = self.causal if causal is None else causal
q, k, v = qkv.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
attention_drop = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
return output
class CrossAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(self, q, kv, causal=None, key_padding_mask=None):
"""Implements the multihead softmax attention.
Arguments
---------
q: The tensor containing the query. (B, Sq, H, D)
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
causal: if passed, will override self.causal
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
False means to mask out. (B, Sk)
"""
batch_size, seqlen_q = q.shape[0], q.shape[1]
causal = self.causal if causal is None else causal
seqlen_k = kv.shape[1]
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
if kv.shape[3] != q.shape[2]: # MQA/GQA
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
# causal mask needs to take into account the difference between seqlen_q and seqlen_k
row_idx = rearrange(
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
)
col_idx = torch.arange(seqlen_k, device=kv.device, dtype=torch.long)
sk = (
seqlen_k
if key_padding_mask is None
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
)
causal_mask = col_idx > row_idx + sk - seqlen_q
scores = scores.masked_fill(causal_mask, -10000.0)
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
attention_drop = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
return output
class LinearResidual(nn.Linear):
"""Wrap nn.Linear to return the residual as well. For compatibility with FusedDense."""
def forward(self, input: torch.Tensor) -> torch.Tensor:
return super().forward(input), input
def _update_kv_cache(kv, inference_params, layer_idx):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
# Pre-allocate memory for key-values for inference.
num_heads, head_dim = kv.shape[-2:]
if layer_idx not in inference_params.key_value_memory_dict:
kv_cache = torch.empty(
inference_params.max_batch_size,
inference_params.max_seqlen,
2,
num_heads,
head_dim,
dtype=kv.dtype,
device=kv.device,
)
inference_params.key_value_memory_dict[layer_idx] = kv_cache
else:
kv_cache = inference_params.key_value_memory_dict[layer_idx]
# Adjust key and value for inference
batch_start = inference_params.batch_size_offset
batch_end = batch_start + kv.shape[0]
sequence_start = inference_params.seqlen_offset
sequence_end = sequence_start + kv.shape[1]
assert batch_end <= kv_cache.shape[0]
assert sequence_end <= kv_cache.shape[1]
assert kv_cache is not None
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
return kv_cache[batch_start:batch_end, :sequence_end, ...]
class MHA(nn.Module):
"""Multi-head self-attention and cross-attention"""
def __init__(
self,
embed_dim,
num_heads,
num_heads_kv=None,
cross_attn=False,
qkv_proj_bias=True,
out_proj_bias=True,
dropout=0.0,
softmax_scale=None,
causal=False,
layer_idx=None,
dwconv=False,
rotary_emb_dim=0,
rotary_emb_base=10000.0,
rotary_emb_scale_base=None,
rotary_emb_interleaved=False,
use_alibi=False,
window_size=(-1, -1),
fused_bias_fc=False,
use_flash_attn=False,
return_residual=False,
checkpointing=False,
device=None,
dtype=None,
) -> None:
"""
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
return_residual: whether to return the input x along with the output. This is for
performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.embed_dim = embed_dim
self.cross_attn = cross_attn
self.causal = causal
self.layer_idx = layer_idx
self.dwconv = dwconv
self.rotary_emb_dim = rotary_emb_dim
self.use_flash_attn = use_flash_attn
self.return_residual = return_residual
self.checkpointing = checkpointing
if use_alibi:
assert use_flash_attn, "ALiBi code path requires flash_attn"
alibi_slopes = torch.tensor(get_alibi_slopes(num_heads), device=device)
else:
alibi_slopes = None
if window_size != (-1, -1):
assert use_flash_attn, "Local (sliding window) attention code path requires flash_attn"
self.num_heads = num_heads
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
assert (
self.num_heads % self.num_heads_kv == 0
), "num_heads must be divisible by num_heads_kv"
assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
self.head_dim = self.embed_dim // num_heads
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
kv_dim = 2 * self.head_dim * self.num_heads_kv
if self.rotary_emb_dim > 0:
assert not cross_attn, "MHA with rotary embedding does not support cross-attention yet"
assert RotaryEmbedding is not None, "rotary_emb is not installed"
self.rotary_emb = RotaryEmbedding(
self.rotary_emb_dim,
base=rotary_emb_base,
scale_base=rotary_emb_scale_base,
interleaved=rotary_emb_interleaved,
device=device,
)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
linear_resid_cls = (
LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True)
)
wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
inner_attn_cls = (
partial(FlashSelfAttention, alibi_slopes=alibi_slopes, window_size=window_size)
if use_flash_attn
else SelfAttention
)
inner_cross_attn_cls = (
partial(FlashCrossAttention, alibi_slopes=alibi_slopes, window_size=window_size)
if use_flash_attn
else CrossAttention
)
if not self.cross_attn:
self.Wqkv = wqkv_cls(embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs)
else:
self.Wq = linear_cls(embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs)
self.Wkv = wqkv_cls(embed_dim, kv_dim, bias=qkv_proj_bias, **factory_kwargs)
if self.dwconv:
if self.num_heads_kv == self.num_heads:
self.dwconv_qkv = nn.Conv1d(
qkv_dim, qkv_dim, kernel_size=3, padding=2, groups=qkv_dim
)
else:
self.dwconv_q = nn.Conv1d(
embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim
)
self.dwconv_kv = nn.Conv1d(kv_dim, kv_dim, kernel_size=3, padding=2, groups=kv_dim)
self.inner_attn = inner_attn_cls(
causal=causal,
softmax_scale=softmax_scale,
attention_dropout=dropout,
)
self.inner_cross_attn = inner_cross_attn_cls(
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
)
self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
dtype = self.out_proj.weight.dtype if dtype is None else dtype
device = self.out_proj.weight.device
return torch.empty(
batch_size,
max_seqlen,
2,
self.num_heads_kv,
self.head_dim,
dtype=dtype,
device=device,
)
def _update_kv_cache(self, kv, inference_params):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
assert not self.dwconv, "Generation does not support dwconv yet"
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
return _update_kv_cache(kv, inference_params, self.layer_idx)
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
"""
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
q: (batch_size, seqlen_q, nheads, head_dim)
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
"""
assert inference_params is not None and inference_params.seqlen_offset > 0
assert self.use_flash_attn
if self.rotary_emb_dim > 0:
assert self.rotary_emb.scale is None, "This code path does not support xPos"
self.rotary_emb._update_cos_sin_cache(
inference_params.max_seqlen, device=q.device, dtype=q.dtype
)
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
else:
rotary_cos, rotary_sin = None, None
batch = q.shape[0]
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
cache_seqlens = (
inference_params.lengths_per_sample[:batch]
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
context = flash_attn_with_kvcache(
q,
kv_cache[:, :, 0],
kv_cache[:, :, 1],
kv[:, :, 0],
kv[:, :, 1],
rotary_cos=rotary_cos,
rotary_sin=rotary_sin,
cache_seqlens=cache_seqlens,
softmax_scale=self.inner_cross_attn.softmax_scale,
causal=self.inner_cross_attn.causal,
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
alibi_slopes=alibi_slopes,
)
return context
def _update_kvcache_attention(self, q, kv, inference_params):
"""Write kv to inference_params, then do attention"""
if (
inference_params.seqlen_offset == 0
or flash_attn_with_kvcache is None
or not self.use_flash_attn
):
# TODO: this only uses seqlen_offset and not lengths_per_sample.
kv = self._update_kv_cache(kv, inference_params)
return self.inner_cross_attn(q, kv)
else:
batch = q.shape[0]
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
cache_seqlens = (
inference_params.lengths_per_sample[:batch]
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
return flash_attn_with_kvcache(
q,
kv_cache[:, :, 0],
kv_cache[:, :, 1],
kv[:, :, 0],
kv[:, :, 1],
cache_seqlens=cache_seqlens,
softmax_scale=self.inner_cross_attn.softmax_scale,
causal=self.inner_cross_attn.causal,
alibi_slopes=alibi_slopes,
)
def forward(
self,
x,
x_kv=None,
key_padding_mask=None,
cu_seqlens=None,
max_seqlen=None,
mixer_subset=None,
inference_params=None,
cu_adapter_mask=None,
**kwargs,
):
"""
Arguments:
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
is the is the sum of the sequence lengths in the batch.
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into x. Only applicable when using
FlashAttention.
max_seqlen: int. Maximum sequence length in the batch.
key_padding_mask: boolean mask, True means to keep, False means to mask out.
(batch, seqlen). Only applicable when not using FlashAttention.
mixer_subset: for cross-attention only. If not None, will take a subset of x
before applying the query projection. Useful for e.g., ViT where we only care
about the CLS token in the last layer.
inference_params: for generation. Adapted from Megatron-LM (and Apex)
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
"""
if cu_seqlens is not None:
assert max_seqlen is not None
assert key_padding_mask is None
assert self.use_flash_attn
assert not self.dwconv
if key_padding_mask is not None:
assert cu_seqlens is None
assert max_seqlen is None
assert not self.use_flash_attn
if inference_params is not None:
assert key_padding_mask is None
assert cu_seqlens is None and max_seqlen is None
assert not self.dwconv
kwargs = (
{"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs}
if self.use_flash_attn
else {"key_padding_mask": key_padding_mask, **kwargs}
)
seqlen_offset = (
0
if inference_params is None
else (
inference_params.lengths_per_sample
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
)
rotary_max_seqlen = (
inference_params.max_sequence_len if inference_params is not None else max_seqlen
)
batch, seqlen = x.shape[:2]
if not self.cross_attn and self.num_heads_kv == self.num_heads:
assert x_kv is None and mixer_subset is None
if cu_adapter_mask is not None:
unique_tasks = torch.unique(cu_adapter_mask).tolist()
qkv_dtype = next(self.Wqkv.parameters()).dtype
qkv = torch.empty(x.shape[0], self.Wqkv.out_features,
dtype=qkv_dtype, device=x.device)
for task_id in unique_tasks:
task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0]
task_tensor = x[task_indices]
if not self.return_residual:
task_qkv = self.Wqkv(task_tensor, task_id=task_id)
else:
task_qkv, _ = self.Wqkv(task_tensor, task_id=task_id, residual=True)
qkv[task_indices] = task_qkv
else:
if not self.return_residual:
qkv = self.Wqkv(x)
else:
qkv, x = self.Wqkv(x)
if self.dwconv:
qkv = rearrange(
self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
).contiguous()
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
if (
inference_params is None
or inference_params.seqlen_offset == 0
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
or not self.use_flash_attn
):
if self.rotary_emb_dim > 0:
qkv = self.rotary_emb(
qkv,
seqlen_offset=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=rotary_max_seqlen,
)
if inference_params is None:
if not self.checkpointing:
context = self.inner_attn(qkv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
else:
context = self._update_kvcache_attention(
qkv[:, :, 0], qkv[:, :, 1:], inference_params
)
else:
context = self._apply_rotary_update_kvcache_attention(
qkv[:, :, 0], qkv[:, :, 1:], inference_params
)
else:
if self.cross_attn:
if not self.return_residual:
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
kv = self.Wkv(x_kv if x_kv is not None else x)
else:
if x_kv is not None:
kv, x_kv = self.Wkv(x_kv)
else:
kv, x = self.Wkv(x)
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
else:
assert self.num_heads_kv != self.num_heads
if not self.return_residual:
qkv = self.Wqkv(x)
else:
qkv, x = self.Wqkv(x)
q = qkv[..., : self.num_heads * self.head_dim]
kv = qkv[..., self.num_heads * self.head_dim :]
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
if self.dwconv:
q = rearrange(
self.dwconv_q(rearrange(q, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
).contiguous()
kv = rearrange(
self.dwconv_kv(rearrange(kv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
).contiguous()
if (
inference_params is None
or inference_params.seqlen_offset == 0
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
or not self.use_flash_attn
):
if self.rotary_emb_dim > 0:
q, kv = self.rotary_emb(
q,
kv,
seqlen_offset=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=rotary_max_seqlen,
)
if inference_params is None:
if not self.checkpointing:
context = self.inner_cross_attn(q, kv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(
self.inner_cross_attn, q, kv, **kwargs
)
else:
context = self._update_kvcache_attention(q, kv, inference_params)
else:
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
inp = rearrange(context, "... h d -> ... (h d)")
if cu_adapter_mask is not None:
unique_tasks = torch.unique(cu_adapter_mask).tolist()
out_dtype = next(self.out_proj.parameters()).dtype
out = torch.empty(inp.shape[0], self.out_proj.out_features,
dtype=out_dtype, device=inp.device)
for task_id in unique_tasks:
task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0]
task_tensor = inp[task_indices]
task_out = self.out_proj(task_tensor, task_id=task_id)
out[task_indices] = task_out
else:
out = self.out_proj(inp)
return out if not self.return_residual else (out, x)
|