File size: 15,447 Bytes
f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb e860caa f9b3adb 1b0fa28 54b019f 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb e860caa f9b3adb e860caa f9b3adb e860caa f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 2646361 f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb e860caa 95fd08c 2646361 e860caa f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 95fd08c 2646361 e860caa 2646361 e860caa f9b3adb 7c4a80c 2646361 a709b51 4b000ec f221b0a 4b000ec f9b3adb 7c4a80c f221b0a 7c4a80c 4b000ec 2646361 4b000ec a709b51 6a92924 a709b51 6a92924 a709b51 2646361 4b000ec 27d23b2 4b000ec e860caa 4434bf3 f9b3adb 82b68d6 54b019f 82b68d6 a709b51 f9b3adb da863dd 54b019f f9b3adb a709b51 2646361 54b019f 2646361 7c4a80c f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb 4b000ec f9b3adb e860caa 7c4a80c f9b3adb 4b000ec 95fd08c 4b000ec ffd672d 4b000ec 2646361 ffd672d e860caa 4b000ec ffd672d e860caa ffd672d e860caa ffd672d e860caa 95fd08c ffd672d 95fd08c 2646361 a709b51 ffd672d a709b51 54b019f 2646361 54b019f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import math
import os
from functools import partial
from typing import Iterator, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.utils.parametrize as parametrize
from torch import nn
from torch.nn import Parameter
from torch.nn import functional as F
from transformers import PretrainedConfig
from .configuration_xlm_roberta import XLMRobertaFlashConfig
from .modeling_xlm_roberta import (
XLMRobertaFlashConfig,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
def initialized_weights(
shape: Tuple[int], num_adaptations: int, init: str = "kaiming"
) -> torch.Tensor:
weight_data = []
for _ in range(num_adaptations):
new_adaption = torch.zeros(shape)
if init == "kaiming":
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5))
elif init == "normal":
nn.init.normal_(new_adaption)
else:
raise NotImplementedError
weight_data.append(new_adaption)
return torch.stack(weight_data, dim=0)
class LoRAParametrization(nn.Module):
"""
This LoRA implementation was inspired by https://github.com/cccntu/minLoRA
The MIT License (MIT) Copyright (c) 2020 Andrej Karpathy
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
def __init__(
self,
fan_in: int,
fan_out: int,
layer_type: str = "linear",
num_adaptations: int = 1,
rank: int = 4,
dropout_p: float = 0.0,
alpha: float = 1,
):
super().__init__()
# if weight is stored as (fan_out, fan_in), the memory layout of A & B follows (W + BA)x
# otherwise, it's x(W + AB). This allows us to tie the weights between linear layers and embeddings
fan_in_fan_out = layer_type == "embedding"
self.swap = (lambda x: (x[1], x[0])) if fan_in_fan_out else (lambda x: x)
if layer_type == "linear":
self.lora_A = nn.Parameter(
initialized_weights((rank, fan_in), num_adaptations, init="kaiming")
)
self.lora_B = nn.Parameter(torch.zeros((num_adaptations, fan_out, rank)))
elif layer_type == "embedding":
self.lora_A = nn.Parameter(torch.zeros((num_adaptations, fan_in, rank)))
self.lora_B = nn.Parameter(
initialized_weights(
(rank, fan_out), num_adaptations=num_adaptations, init="normal"
)
)
else:
raise NotImplementedError
self.lora_alpha, self.rank = alpha, rank
self.scaling = alpha / rank
self.lora_dropout = nn.Dropout(p=dropout_p) if dropout_p > 0 else lambda x: x
self.dropout_fn = self._dropout if dropout_p > 0 else lambda x: x
self.register_buffer(
"lora_dropout_mask",
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
persistent=False,
)
def _dropout(self, A):
# to mimic the original implementation: A @ dropout(x), we do (A * dropout(ones)) @ x
return A * self.lora_dropout(self.lora_dropout_mask)
def lora_forward(self, X, current_task):
return (
X
+ torch.matmul(
*self.swap(
(
self.lora_B[current_task],
self.dropout_fn(self.lora_A[current_task]),
)
)
).view(X.shape)
* self.scaling
)
def forward(self, X):
return X
@classmethod
def from_linear(
cls,
layer: nn.Module,
num_adaptations: int,
rank: int,
dropout_p: float,
alpha: float,
):
assert isinstance(layer, nn.Linear)
fan_out, fan_in = layer.weight.shape
return cls(
fan_in,
fan_out,
num_adaptations=num_adaptations,
layer_type="linear",
rank=rank,
dropout_p=dropout_p,
alpha=alpha,
)
@classmethod
def from_embedding(
cls,
layer: nn.Module,
num_adaptations: int,
rank: int,
dropout_p: float,
alpha: float,
):
assert isinstance(layer, nn.Embedding)
fan_in, fan_out = layer.weight.shape
return cls(
fan_in,
fan_out,
num_adaptations=num_adaptations,
layer_type="embedding",
rank=rank,
dropout_p=dropout_p,
alpha=alpha,
)
@classmethod
def add_to_layer(
cls,
layer: nn.Module,
num_adaptations: int,
rank: int,
dropout_p: float,
alpha: float,
):
"""
Registering LoRA adapters to all embedding and linear layers.
Additionally, we implement a custom forward function for LoRA parametrization.
This function modifies the layer's forward pass to optionally use task-specific
parameters. When a `task_id` is provided, it employs a LoRA parametrization
to modify the original weights according to the specific task. This allows
the layer to adapt dynamically to different tasks at runtime. If no `task_id`
is specified, the layer uses its original weights.
"""
if isinstance(layer, nn.Linear):
parametrize.register_parametrization(
layer,
"weight",
cls.from_linear(
layer,
num_adaptations=num_adaptations,
rank=rank,
dropout_p=dropout_p,
alpha=alpha,
),
)
def new_forward(self, input, task_id=None, residual=False):
if task_id is not None:
weights = self.parametrizations.weight[0].lora_forward(
self.weight, current_task=task_id
)
else:
weights = self.weight
out = F.linear(input, weights, self.bias)
if residual:
return out, input
return out
layer.forward = new_forward.__get__(layer, layer.__class__)
elif isinstance(layer, nn.Embedding):
parametrize.register_parametrization(
layer,
"weight",
cls.from_embedding(
layer,
num_adaptations=num_adaptations,
rank=rank,
dropout_p=dropout_p,
alpha=alpha,
),
)
def new_forward(self, input, task_id=None):
if task_id is not None:
weights = self.parametrizations.weight[0].lora_forward(
self.weight, current_task=task_id
)
else:
weights = self.weight
out = F.embedding(
input,
weights,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
return out
layer.forward = new_forward.__get__(layer, layer.__class__)
class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
"""
A wrapper class around the Jina XLM-RoBERTa model that integrates LoRA (Low-Rank Adaptation) adapters.
"""
def __init__(
self,
config: XLMRobertaFlashConfig,
roberta: Optional[XLMRobertaModel] = None,
add_pooling_layer: bool = True,
):
super().__init__(config)
if roberta is None:
self.roberta = XLMRobertaModel(config, add_pooling_layer=add_pooling_layer)
else:
self.roberta = roberta
self._lora_adaptations = config.lora_adaptations
if (
not isinstance(self._lora_adaptations, list)
or len(self._lora_adaptations) < 1
):
raise ValueError(
f"`lora_adaptations` must be a list and contain at least one element"
)
self._task_instructions = config.task_instructions
if (
not isinstance(self._task_instructions, dict)
or len(self._task_instructions) != len(self._lora_adaptations)
or not all(
[v in self._lora_adaptations for v in self._task_instructions.keys()]
)
):
raise ValueError(
f"`task_instructions` must be a dict and contain the same number of elements "
f"as `lora_adaptations` with all keys in `task_instructions` present in `lora_adaptations`."
)
self._adaptation_map = {
name: idx for idx, name in enumerate(self._lora_adaptations)
}
self._rank = config.lora_rank
self._dropout_p = config.lora_dropout_p
self._alpha = config.lora_alpha
self._register_lora(
num_adaptations=len(self._lora_adaptations),
rank=self._rank,
dropout_p=self._dropout_p,
alpha=self._alpha,
)
self.main_params_trainable = config.lora_main_params_trainable
@property
def rotary_emb_base(self):
return self.roberta.rotary_emb_base
@rotary_emb_base.setter
def rotary_emb_base(self, base):
self.roberta.rotary_emb_base = base
@property
def main_params_trainable(self):
return self._main_params_trainable
@main_params_trainable.setter
def main_params_trainable(self, val: bool):
"""Whether the main parameters (i.e. those that are not LoRA) should be trainable.
This method sets the `requires_grad_` attribute of the main weights
and controls which parameters are returned in `self.parameters()`.
:param val: Whether or not to make the parameters trainable.
:return: None
"""
self._main_params_trainable = val
for name, param in super().named_parameters():
if "lora" not in name:
param.requires_grad_(val)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: bool = None,
**kwargs,
):
for key in list(kwargs.keys()):
if key in config.to_dict():
config.update({key: kwargs.pop(key)})
if config.load_trained_adapters: # checkpoint already contains LoRA adapters
return super().from_pretrained(
pretrained_model_name_or_path,
*model_args,
config=config,
cache_dir=cache_dir,
ignore_mismatched_sizes=ignore_mismatched_sizes,
force_download=force_download,
local_files_only=local_files_only,
token=token,
revision=revision,
use_safetensors=use_safetensors,
**kwargs,
)
else: # initializing new adapters
roberta = XLMRobertaModel.from_pretrained(
pretrained_model_name_or_path,
*model_args,
use_flash_attn=config.use_flash_attn,
**kwargs,
)
return cls(config, roberta=roberta)
def _register_lora(self, num_adaptations, rank, dropout_p, alpha):
self.apply(
partial(
LoRAParametrization.add_to_layer,
num_adaptations=num_adaptations,
rank=rank,
dropout_p=dropout_p,
alpha=alpha,
)
)
def forward(self, *args, **kwargs):
return self.roberta(*args, **kwargs)
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
for _, param in self.named_parameters(recurse=recurse):
yield param
def named_parameters(
self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
) -> Iterator[Tuple[str, Parameter]]:
for name, param in super().named_parameters(
prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate
):
if "lora" in name or self.main_params_trainable:
yield name, param
@torch.inference_mode()
def encode(
self,
sentences: Union[str, List[str]],
*args,
task: Optional[str] = None,
**kwargs,
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
"""
Computes sentence embeddings.
sentences(`str` or `List[str]`):
Sentence or sentences to be encoded
task(`str`, *optional*, defaults to `None`):
Specifies the task for which the encoding is intended. If `task` is not provided,
all LoRA adapters are disabled, and the model reverts to its original,
general-purpose weights.
"""
if task and task not in self._lora_adaptations:
raise ValueError(
f"Unsupported task '{task}'. "
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
f"Alternatively, don't pass the `task` argument to disable LoRA."
)
adapter_mask = None
if task:
task_id = self._adaptation_map[task]
num_examples = 1 if isinstance(sentences, str) else len(sentences)
adapter_mask = torch.full(
(num_examples,), task_id, dtype=torch.int32, device=self.device
)
if isinstance(sentences, str):
sentences = self._task_instructions[task] + sentences
else:
sentences = [
self._task_instructions[task] + sentence for sentence in sentences
]
return self.roberta.encode(
sentences, *args, adapter_mask=adapter_mask, **kwargs
)
|