Create modeling_xlm_roberta_for_glue.py
Browse files- modeling_xlm_roberta_for_glue.py +104 -0
modeling_xlm_roberta_for_glue.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
6 |
+
from transformers.modeling_outputs import SequenceClassifierOutput, QuestionAnsweringModelOutput, TokenClassifierOutput
|
7 |
+
|
8 |
+
from .modeling_bert import XLMRobertaPreTrainedModel, XLMRobertaModel
|
9 |
+
from .configuration_bert import JinaBertConfig
|
10 |
+
|
11 |
+
|
12 |
+
class BertForSequenceClassification(XLMRobertaPreTrainedModel):
|
13 |
+
def __init__(self, config: JinaBertConfig):
|
14 |
+
super().__init__(config)
|
15 |
+
self.num_labels = config.num_labels
|
16 |
+
self.config = config
|
17 |
+
|
18 |
+
self.bert = XLMRobertaModel(config)
|
19 |
+
classifier_dropout = (
|
20 |
+
config.classifier_dropout
|
21 |
+
if config.classifier_dropout is not None
|
22 |
+
else config.hidden_dropout_prob
|
23 |
+
)
|
24 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
25 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
26 |
+
|
27 |
+
# Initialize weights and apply final processing
|
28 |
+
self.post_init()
|
29 |
+
|
30 |
+
|
31 |
+
def forward(
|
32 |
+
self,
|
33 |
+
input_ids: Optional[torch.Tensor] = None,
|
34 |
+
attention_mask: Optional[torch.Tensor] = None,
|
35 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
36 |
+
position_ids: Optional[torch.Tensor] = None,
|
37 |
+
head_mask: Optional[torch.Tensor] = None,
|
38 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
39 |
+
labels: Optional[torch.Tensor] = None,
|
40 |
+
output_attentions: Optional[bool] = None,
|
41 |
+
output_hidden_states: Optional[bool] = None,
|
42 |
+
return_dict: Optional[bool] = None,
|
43 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
44 |
+
r"""
|
45 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
46 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
47 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
48 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
49 |
+
"""
|
50 |
+
return_dict = (
|
51 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
52 |
+
)
|
53 |
+
|
54 |
+
assert head_mask is None
|
55 |
+
assert inputs_embeds is None
|
56 |
+
assert output_attentions is None
|
57 |
+
assert output_hidden_states is None
|
58 |
+
assert return_dict
|
59 |
+
outputs = self.bert(
|
60 |
+
input_ids,
|
61 |
+
attention_mask=attention_mask,
|
62 |
+
token_type_ids=token_type_ids,
|
63 |
+
position_ids=position_ids,
|
64 |
+
)
|
65 |
+
|
66 |
+
pooled_output = outputs[1]
|
67 |
+
|
68 |
+
pooled_output = self.dropout(pooled_output)
|
69 |
+
logits = self.classifier(pooled_output)
|
70 |
+
|
71 |
+
loss = None
|
72 |
+
if labels is not None:
|
73 |
+
if self.config.problem_type is None:
|
74 |
+
if self.num_labels == 1:
|
75 |
+
self.config.problem_type = "regression"
|
76 |
+
elif self.num_labels > 1 and (
|
77 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
78 |
+
):
|
79 |
+
self.config.problem_type = "single_label_classification"
|
80 |
+
else:
|
81 |
+
self.config.problem_type = "multi_label_classification"
|
82 |
+
|
83 |
+
if self.config.problem_type == "regression":
|
84 |
+
loss_fct = MSELoss()
|
85 |
+
if self.num_labels == 1:
|
86 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
87 |
+
else:
|
88 |
+
loss = loss_fct(logits, labels)
|
89 |
+
elif self.config.problem_type == "single_label_classification":
|
90 |
+
loss_fct = CrossEntropyLoss()
|
91 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
92 |
+
elif self.config.problem_type == "multi_label_classification":
|
93 |
+
loss_fct = BCEWithLogitsLoss()
|
94 |
+
loss = loss_fct(logits, labels)
|
95 |
+
if not return_dict:
|
96 |
+
output = (logits,) + outputs[2:]
|
97 |
+
return ((loss,) + output) if loss is not None else output
|
98 |
+
|
99 |
+
return SequenceClassifierOutput(
|
100 |
+
loss=loss,
|
101 |
+
logits=logits,
|
102 |
+
hidden_states=outputs.hidden_states,
|
103 |
+
attentions=outputs.attentions,
|
104 |
+
)
|