File size: 11,077 Bytes
eec25bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import torch
import transformers
import jellyfish
from tqdm import tqdm
from transformers import AutoModelForMaskedLM
from .poet_utils import RHYME_SCHEMES, METER_TYPES
from torch.utils.data import DataLoader, Dataset
from pytorch_optimizer import SAM,GSAM, ProportionScheduler, AdamP
class ValidatorInterface(torch.nn.Module):
"""Pytorch Model Interface. Abstract class for all validators
Args:
torch (_type_): Is child of torch.nn.Module for integration with torch and huggingface
"""
def __init__(self, *args, **kwargs) -> None:
""" Constructor. As child Class needs to construct Parent
"""
super().__init__(*args, **kwargs)
def forward(self, input_ids=None, attention_mask=None, *args, **kwargs):
"""Compute model output and model loss
Args:
input_ids (_type_, optional): Model inputs. Defaults to None.
attention_mask (_type_, optional): Attention mask where padding starts. Defaults to None.
Raises:
NotImplementedError: Abstract class
"""
raise NotImplementedError()
def predict(self, input_ids=None, *args, **kwargs):
"""Compute model outputs
Args:
input_ids (_type_, optional): Model inputs. Defaults to None.
Raises:
NotImplementedError: Abstract class
"""
raise NotImplementedError()
def validate(self, input_ids=None, *args, **kwargs):
"""Validate model given some labels, Doesn't use loss
Args:
input_ids (_type_, optional): Model inputs. Defaults to None.
Raises:
NotImplementedError: Abstract class
"""
raise NotImplementedError()
class RhymeValidator(ValidatorInterface):
def __init__(self, pretrained_model, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.model = AutoModelForMaskedLM.from_pretrained(pretrained_model, output_hidden_states=True)
self.config = self.model.config
self.model_size = self.config.hidden_size
self.rhyme_regressor = torch.nn.Linear(self.model_size, len(RHYME_SCHEMES)) # Common Rhyme Type
self.loss_fnc = torch.nn.CrossEntropyLoss(label_smoothing=0.05)
def forward(self, input_ids=None, attention_mask=None, rhyme=None, *args, **kwargs):
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids.type(torch.LongTensor))
last_hidden = outputs['hidden_states'][-1]
rhyme_regression = self.rhyme_regressor((last_hidden[:,0,:].view(-1, self.model_size)))
softmaxed = torch.softmax(rhyme_regression, dim=1)
rhyme_loss = self.loss_fnc(softmaxed, rhyme)
return {"model_output" : softmaxed,
"loss": rhyme_loss + outputs.loss}
def predict(self, input_ids=None, *args, **kwargs):
outputs = self.model(input_ids=input_ids)
last_hidden = outputs['hidden_states'][-1]
rhyme_regression = self.rhyme_regressor((last_hidden[:,0,:].view(-1, self.model_size)))
softmaxed = torch.softmax(rhyme_regression, dim=1)
return softmaxed
def validate(self, input_ids=None, rhyme=None, k:int = 2,*args, **kwargs):
outputs = self.model(input_ids=input_ids)
last_hidden = outputs['hidden_states'][-1]
rhyme_regression = self.rhyme_regressor((last_hidden[:,0,:].view(-1, self.model_size)))
softmaxed = torch.softmax(rhyme_regression, dim=1)
softmaxed = softmaxed.flatten()
predicted_val = torch.argmax(softmaxed)
predicted_top_k = torch.topk(softmaxed, k).indices
label_val = torch.argmax(rhyme.flatten())
validation_true_val = (label_val == predicted_val).float().sum().numpy()
top_k_presence = 0
if label_val in predicted_top_k:
top_k_presence = 1
levenshtein = jellyfish.levenshtein_distance(RHYME_SCHEMES[predicted_val] if RHYME_SCHEMES[predicted_val] != None else "", RHYME_SCHEMES[label_val] if RHYME_SCHEMES[label_val] != None else "")
hit_pred = softmaxed[label_val].detach().numpy()
return {"acc" : validation_true_val,
"top_k" : top_k_presence,
"lev_distance": levenshtein,
"predicted_label" : hit_pred
}
class MeterValidator(ValidatorInterface):
def __init__(self, pretrained_model, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.model = AutoModelForMaskedLM.from_pretrained(pretrained_model, output_hidden_states=True)
self.config = self.model.config
self.model_size = self.config.hidden_size
self.meter_regressor = torch.nn.Linear(self.model_size, len(METER_TYPES)) # Meter Type
self.loss_fnc = torch.nn.CrossEntropyLoss(label_smoothing=0.05)
def forward(self, input_ids=None, attention_mask=None, metre=None, *args, **kwargs):
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids.type(torch.LongTensor))
last_hidden = outputs['hidden_states'][-1]
meter_regression = self.meter_regressor((last_hidden[:,0,:].view(-1, self.model_size)))
softmaxed = torch.softmax(meter_regression, dim=1)
meter_loss = self.loss_fnc(softmaxed, metre)
return {"model_output" : softmaxed,
"loss": meter_loss + outputs.loss}
def predict(self, input_ids=None, *args, **kwargs):
outputs = self.model(input_ids=input_ids)
last_hidden = outputs['hidden_states'][-1]
meter_regression = self.meter_regressor((last_hidden[:,0,:].view(-1, self.model_size)))
softmaxed = torch.softmax(meter_regression, dim=1)
return softmaxed
def validate(self, input_ids=None, metre=None, k: int=2,*args, **kwargs):
outputs = self.model(input_ids=input_ids)
last_hidden = outputs['hidden_states'][-1]
meter_regression = self.meter_regressor((last_hidden[:,0,:].view(-1, self.model_size)))
softmaxed = torch.softmax(meter_regression, dim=1)
softmaxed = softmaxed.flatten()
predicted_val = torch.argmax(softmaxed)
predicted_top_k = torch.topk(softmaxed, k).indices
label_val = torch.argmax(metre.flatten())
validation_true_val = (label_val == predicted_val).float().sum().numpy()
top_k_presence = 0
if label_val in predicted_top_k:
top_k_presence = 1
hit_pred = softmaxed[label_val].detach().numpy()
return {"acc" : validation_true_val,
"top_k" : top_k_presence,
"predicted_label" : hit_pred
}
class ValidatorTrainer:
def __init__(self, model: ValidatorInterface, args: dict, train_dataset: Dataset, data_collator, device):
self.model = model
self.args = args
self.epochs = 1 if "epochs" not in args.keys() else args["epochs"]
self.batch_size = 1 if "batch_size" not in args.keys() else args["batch_size"]
self.lr = 3e-4 if "lr" not in args.keys() else args["lr"]
self.weight_decay = 0.0 if "weight_decay" not in args.keys() else args['weight_decay']
self.train_loader = DataLoader(train_dataset, self.batch_size, True, collate_fn=data_collator)
# SAM Values
self.device = device
self.optimizer = SAM(self.model.parameters(), torch.optim.AdamW, lr=self.lr, weight_decay=self.weight_decay)
self.scheduler = transformers.get_constant_schedule_with_warmup(self.optimizer, len(train_dataset)//self.batch_size)
# GSAM Value
#self.device = device
#self.base_optim = AdamP(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
#self.scheduler = transformers.get_constant_schedule_with_warmup(self.base_optim, len(train_dataset)//self.batch_size)
#self.rho_scheduler= ProportionScheduler( self.scheduler, max_lr=self.lr)
#self.optimizer = GSAM(self.model.parameters(),self.base_optim, self.model, self.rho_scheduler, alpha=0.05)
def train(self):
for epoch in tqdm(range(self.epochs)):
self.model.train()
# SAM Attempt
for step, batch in enumerate(self.train_loader):
# First Pass
loss = self.model(input_ids=batch["input_ids"].to(self.device), attention_mask=batch["attention_mask"].to(self.device),
rhyme = None if batch["rhyme"] == None else batch["rhyme"].to(self.device),
metre = None if batch["metre"] == None else batch["metre"].to(self.device))['loss']
loss.backward()
self.optimizer.first_step(zero_grad=True)
# Second Pass
loss = self.model(input_ids=batch["input_ids"].to(self.device), attention_mask=batch["attention_mask"].to(self.device),
rhyme = None if batch["rhyme"] == None else batch["rhyme"].to(self.device),
metre = None if batch["metre"] == None else batch["metre"].to(self.device))['loss']
loss.backward()
self.optimizer.second_step(zero_grad=True)
self.scheduler.step()
# GSAM Attempt
#for step, batch in enumerate(self.train_loader):
# def closure():
# self.optimizer.base_optimizer.zero_grad()
# with torch.enable_grad():
# outputs = self.model(input_ids=batch["input_ids"].to(self.device), attention_mask=batch["attention_mask"].to(self.device),
# rhyme = None if batch["rhyme"] == None else batch["rhyme"].to(self.device),
# metre = None if batch["metre"] == None else batch["metre"].to(self.device))
# loss = torch.nn.functional.cross_entropy(outputs['model_output'].to(self.device),batch['rhyme'].to(self.device) if isinstance(self.model, RhymeValidator) else batch['metre'].to(self.device))
# loss.backward()
# return outputs['model_output'], loss.detach()
# predictions, loss = self.optimizer.step(closure)
# self.scheduler.step()
# self.optimizer.update_rho_t()
#
if step % 100 == 0:
print(f'Step {step}, loss : {loss.item()}', flush=True)
|