File size: 36,471 Bytes
13cea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
import os
import json
import numpy as np
import torch

from utils.poet_utils import StropheParams, SyllableMaker, TextAnalysis, TextManipulation
from torch.utils.data import Dataset
from transformers import PreTrainedTokenizerBase, PreTrainedModel
#TODO: Maybe replace year of book being written for year Author was born
class CorpusDatasetPytorch:
    """Dataset class responsible for data loading.
    """
    
    class RawDataset:
        """Dataset distributing raw sting data with no preprocessing
        """
        def __init__(self, data_file_paths, lower_case:bool = True):
            """Construct the frame around Raw data generation

            Args:
                data_file_paths (_type_): list of paths to data files
                lower_case (bool, optional): if resulting data should be in lowercase. Defaults to True.
            """
            self._data_file_paths = data_file_paths
            self.lower_case = lower_case
        
        def gen_files(self):
            """Get individual opened files

            Yields:
                _type_: open file object
            """
            for filename in self._data_file_paths:
                 yield open(filename, 'r') 
                 
        def get_text(self):
            """Get lines of text of poetry

            Yields:
                str: individual verse line
            """
            for step,file in enumerate(self.gen_files()):
                if step % 500 == 0:
                    print(f"Processing file {step}")
                datum = json.load(file)
                for data_line in datum:
                    for part_line in data_line['body']:
                        for text_line in part_line:
                            yield text_line['text'].lower() if self.lower_case else text_line['text']
                            
        def get_part(self):
            """Get strophe of poetry

            Yields:
                str: 1 strophe of poetry
            """
            for step,file in enumerate(self.gen_files()):
                if step % 500 == 0:
                    print(f"Processing file {step}")
                datum = json.load(file)
                for data_line in datum:
                    for part_line in data_line['body']:
                        part = []
                        for text_line in part_line:
                            part.append(text_line['text'])
                        yield "\n".join(part).lower() if self.lower_case else "\n".join(part)
        
        def get_body(self):
            """Get whole poem

            Yields:
                str: 1 whole poem
            """
            for step,file in enumerate(self.gen_files()):
                if step % 500 == 0:
                    print(f"Processing file {step}")
                datum = json.load(file)
                for data_line in datum:
                    body = []
                    for part_line in data_line['body']:
                        
                        for text_line in part_line:
                            body.append(text_line['text'])
                        body.append("\n")
                    yield "\n".join(body).lower() if self.lower_case else "\n".join(body)
    
    class TextDataset(Dataset):
        """Dataset of preprocessed verse lines 

        Args:
            Dataset (_type_): Dataset is child of torch class for better integration with torch and huggingface
        """
        
        def __init__(self, data_file_paths, prompt_length=True, prompt_ending=True, lower_case=True, val_data_rate: float = 0.05, test_data_rate: float = 0.05):
            """Construct the class our given data files path and store variables

            Args:
                data_file_paths (_type_):  list of paths to data files
                prompt_length (bool, optional): If to prompt the syllable count. Defaults to True.
                prompt_ending (bool, optional): If to prompt verse ending. Defaults to True.
                lower_case (bool, optional): If the string should be in lowercase. Defaults to True.
                val_data_rate (float, optional): Amount of data to be left for validation. Defaults to 0.05.
                test_data_rate (float, optional): Amount of data to be left for validation. Defaults to 0.05.
            """
            self._data_file_paths = data_file_paths
            self.prompt_length = prompt_length
            self.prompt_ending = prompt_ending
            self.lower_case = lower_case
            
            self.val_data_rate = val_data_rate
            self.test_data_rate = test_data_rate
            
            self.data = []
            self.validation_data = []
            self.test_data = []
         
         
        def gen_files(self):
            """Get individual opened files

            Yields:
                _type_: open file object
            """
            for filename in self._data_file_paths:
                 yield open(filename, 'r') 
                 
        @staticmethod
        def _vowels_and_endings(raw_text):
            """Get the verse ending and number of syllables in verse

            Args:
                raw_text (str): raw verse to analyze

            Returns:
                tuple: number of syllables, ending syllable
            """
            syllabs = SyllableMaker.syllabify(raw_text)
            vowels = len(syllabs) #INFO: Now counts the number of syllables
            ending = syllabs[-1]
            return vowels, ending
        
        @staticmethod
        def _ending_vector(end):
            """Construct One-hot encoded vector for ending syllable

            Args:
                end (str): Ending syllable

            Returns:
                numpy.ndarray: One-hot encoded vector of ending syllable
            """
            verse_end_vector = np.zeros(len(StropheParams.ENDS))
            if end in StropheParams.ENDS[:-1]:
                verse_end_vector[StropheParams.ENDS.index(end)] = 1
            else:
                verse_end_vector[-1] = 1
            return verse_end_vector
        
        @staticmethod
        def _syllable_line(raw_text):
            """Construct verse as sequence of syllables

            Args:
                raw_text (str): raw verse line

            Returns:
                str: Verse line as sequence of syllables
            """
            ending = raw_text[-1] if raw_text[-1] in [',','.','!','?'] else ''
            return " ".join(SyllableMaker.syllabify(raw_text)) + ending
        
        def _construct_line(self, raw_text, metre):
            """Construct individual content line

            Args:
                raw_text (str): raw verse line

            Returns:
                str: Processed verse line with line parameters
            """
            syllables = SyllableMaker.syllabify(raw_text)
            num_str = f"{len(syllables)} # " if self.prompt_length else ""
            verse_end = f"{syllables[-1]} # " if self.prompt_ending else ""
            metre_txt = f"{metre} # "
            return metre_txt + num_str + verse_end  + raw_text
        
        def _introduce_phonetics(self, raw_text:str, phonetics):
            phonetic_text = raw_text
            for word in phonetics['words']:
                phonetic_text = phonetic_text.replace(f'{word["token_lc"]}', f'{word["phoebe"]}') if self.lower_case else phonetic_text.replace(f'{word["token"]}', f'{word["phoebe"]}')
            return phonetic_text
        
        def _construct_syllable_line(self, raw_text, metre):
            """Construct individual content line as sequence of syllables

            Args:
                raw_text (str): raw verse line

            Returns:
                str: Processed verse line as sequence of syllables with line parameters
            """
            ending = raw_text[-1] if raw_text[-1] in [',','.','!','?'] else ''
            syllables = SyllableMaker.syllabify(raw_text)
            num_str = f"{len(syllables)} # " if self.prompt_length else ""
            verse_end = f"{syllables[-1]} # " if self.prompt_ending else ""
            metre_txt = f"{metre} # "
            return  metre_txt+ num_str + verse_end + " ".join(syllables) + ending
                     
            
        def data_text_line_gen(self):
            """Preprocess and process data for usage
            """
            for step,file in enumerate(self.gen_files()):
                if step % 500 == 0:
                    print(f"Processing file {step}")
                datum = json.load(file)
                for data_line in datum:
                    for part_line in data_line['body']:
                        for text_line in part_line:
                            metre = StropheParams.METER_TRANSLATE.get(text_line["metre"][0]["type"], "N")
                            
                            scanned_text = TextManipulation._remove_most_nonchar(text_line['text'], self.lower_case)
                            
                            text_line_scanned = self._construct_line(scanned_text, metre)
                            syllable_line = self._construct_syllable_line(scanned_text, metre)
                            #phonetic_text = self._introduce_phonetics(scanned_text, text_line)
                            
                            num_vowels, verse_end = self._vowels_and_endings(scanned_text)
                            
                            # Based on result of random chose proper set. Because data are large enough, will result in wanted split.
                            rand_split = np.random.rand()
                            if rand_split > self.val_data_rate + self.test_data_rate: 
                                self.data.append({
                                "input_ids" : [text_line_scanned,syllable_line],
                                "nums": [num_vowels],
                                "verse_end": verse_end,
                                "metre": metre
                                     })
                            elif rand_split < self.test_data_rate:
                                self.test_data.append({
                                "input_ids" : [text_line_scanned,syllable_line],
                                "nums": [num_vowels],
                                "verse_end": verse_end,
                                "metre": metre
                                     })
                            else:
                                self.validation_data.append({
                                "input_ids" : [text_line_scanned,syllable_line],
                                "nums": [num_vowels],
                                "verse_end": verse_end,
                                "metre": metre
                                     })
                            
            
        def __len__(self):
            """Return length of training data

            Returns:
                int: length of training data
            """
            return len(self.data)
        
        def __getitem__(self, index):
            """return indexed item

            Args:
                index (int): index from where to return

            Returns:
                dict: dict with indexed data
            """
            return self.data[index]
        
    class BodyDataset(Dataset):
        """Dataset of preprocessed strophe

        Args:
            Dataset (_type_): Dataset is child of torch class for better integration with torch and huggingface
        """
        def __init__(self, data_file_paths,
                     prompt_length=True, prompt_ending=True, prompt_verse=True, verse_len=[4,6], lower_case=True, val_data_rate: float = 0.05, test_data_rate: float = 0.05):
            """Construct the class our given data files path and store variables

            Args:
                data_file_paths (_type_): list of paths to data files
                prompt_length (bool, optional): If to prompt the syllable count. Defaults to True.
                prompt_ending (bool, optional): If to prompt verse ending. Defaults to True.
                prompt_verse (bool, optional): If to prompt rhyme schema . Defaults to True.
                verse_len (list, optional): Considered length of strophe. Defaults to [4,6].
                lower_case (bool, optional): If the string should be in lowercase. Defaults to True.
                val_data_rate (float, optional): Amount of data to be left for validation. Defaults to 0.05.
                test_data_rate (float, optional): Amount of data to be left for validation. Defaults to 0.05.
            """
            self._data_file_paths = data_file_paths
            self.prompt_length = prompt_length
            self.prompt_ending = prompt_ending
            self.prompt_verse = prompt_verse
            self.verse_len = verse_len
            self.lower_case = lower_case
            
            self.val_data_rate = val_data_rate
            self.test_data_rate = test_data_rate
            
            self.data = []
            self.validation_data = []
            self.test_data = []
        
        def gen_files(self):
            """Get individual opened files

            Yields:
                _type_: open file object
            """
            for filename in self._data_file_paths:
                 yield open(filename, 'r')
                 
   
                     
        
        def _construct_line(self, raw_text, metre):
            """Construct individual content line

            Args:
                raw_text (str): raw verse line

            Returns:
                str: Processed verse line with line parameters
            """
            syllables = SyllableMaker.syllabify(raw_text)
            num_str = f"{len(syllables)} # " if self.prompt_length else ""
            verse_end = f"{syllables[-1]} # " if self.prompt_ending else ""
            metre_txt = f"{metre} # "
            return  metre_txt + num_str + verse_end  + raw_text
        
        def _construct_syllable_line(self, raw_text, metre):
            """Construct individual content line as sequence of syllables

            Args:
                raw_text (str): raw verse line

            Returns:
                str: Processed verse line as sequence of syllables with line parameters
            """
            ending = raw_text[-1] if raw_text[-1] in [',','.','!','?'] else ''
            syllables = SyllableMaker.syllabify(raw_text)
            num_str = f"{len(syllables)} # " if self.prompt_length else ""
            verse_end = f"{syllables[-1]} # " if self.prompt_ending else ""
            metre_txt = f"{metre} # "
            return metre_txt + num_str + verse_end + " ".join(syllables) + ending
            
            
                                                           
        def data_body_gen(self):
            """Preprocess and process data for usage
            """
            for step,file in enumerate(self.gen_files()):
                if step % 500 == 0:
                    print(f"Processing file {step}")
                datum = json.load(file)
                
                for data_line in datum:
                    publish_year_text = TextManipulation._year_bucketor(data_line["biblio"]["year"])
                    publish_year_true = data_line["biblio"]["year"] if TextAnalysis._is_year(data_line["biblio"]["year"]) else 'NaN'
                    context = ["NO CONTEXT"]

                    for part_line in data_line['body']:                                                        
                        body = []
                        body_syllabs = []
                        rhyme= []
                        metres = []
                        i = 0
                        for text_line in part_line:
                            
                            # In rare cases multiple, but from searching only 1 metre per line
                            metre = StropheParams.METER_TRANSLATE.get(text_line["metre"][0]["type"], "J")
                            metres +=  [metre]
                            
                            rhyme.append(text_line["rhyme"])  
                            
                            scanned_text = TextManipulation._remove_most_nonchar(text_line["text"], self.lower_case)

                            body.append(self._construct_line(scanned_text,metre))
                            body_syllabs.append(self._construct_syllable_line(scanned_text,metre))
                            
                            i+=1
                            
                            if i in self.verse_len:
                                
                                rhyme_str = TextManipulation._rhyme_string(rhyme)
                                
                                text = f"# {rhyme_str} # {publish_year_text}\n" + "\n".join(body) + "\n"
                                syllable_text = f"# {rhyme_str} # {publish_year_text}\n" + "\n".join(body_syllabs) + "\n"
                                context_text= "\n".join(context)
                                rand_split = np.random.rand()
                                if rand_split > self.val_data_rate + self.test_data_rate:
                                    self.data.append({
                                    "input_ids" : [text,syllable_text],
                                    "context_ids" : context_text,
                                    "year": publish_year_true,
                                    "rhyme":  rhyme_str,
                                    "metre_ids" : metres.copy()
                                     })
                                elif rand_split < self.test_data_rate:
                                    self.test_data.append({
                                    "input_ids" : [text,syllable_text],
                                    "context_ids" : context_text,
                                    "year": publish_year_true,
                                    "rhyme":  rhyme_str,
                                    "metre_ids" : metres.copy()
                                     })
                                else:
                                    self.validation_data.append({
                                    "input_ids" : [text,syllable_text],
                                    "context_ids" : context_text,
                                    "year": publish_year_true,
                                    "rhyme":  rhyme_str,
                                    "metre_ids" : metres.copy()
                                     })
                                
                                if i == max(self.verse_len):
                                    body = []
                                    body_syllabs = []
                                    rhyme = []
                                    metres = []
                                    i=0
                                
        
        def __len__(self):
            """Return length of training data

            Returns:
                int: length of training data
            """
            return len(self.data)
        
        def __getitem__(self, index):
            """return indexed item

            Args:
                index (int): index from where to return

            Returns:
                dict: dict with indexed data
            """
            return self.data[index]
        
    def get_filenames(self):
        """Get paths of data files

        Returns:
            list: Paths of data files
        """
        data_filenames = os.listdir(self.data_dir)
        data_by_files = []
        for filename in data_filenames:
            file_path = os.path.join(self.data_dir, filename)
            data_by_files.append(file_path)
        return data_by_files
        
    def load_raw_(self):
        """Load Raw dataset with raw string data
        """
        filenames = self.get_filenames()
            
        self.raw_dataset = CorpusDatasetPytorch.RawDataset(filenames, self.lower_case)
    
    def load_json_filenames(self, prompt_length, prompt_ending, prompt_verse, verse_len=[4,6], val_data_rate=0.05, test_data_rate=0.05):
        """Load Verse and Strophe datasets

        Args:
            prompt_length (bool, optional): If to prompt the syllable count. Defaults to True.
            prompt_ending (bool, optional): If to prompt verse ending. Defaults to True.
            prompt_verse (bool, optional): If to prompt rhyme schema . Defaults to True.
            verse_len (list, optional): Considered length of strophe. Defaults to [4,6].
            val_data_rate (float, optional): If the string should be in lowercase. Defaults to 0.1.
        """
        filenames = self.get_filenames()
        
        self.pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset(filenames, prompt_ending=prompt_ending, 
                                                    prompt_length=prompt_length, prompt_verse=prompt_verse, 
                                                    verse_len=verse_len, lower_case=self.lower_case, 
                                                    val_data_rate=val_data_rate, test_data_rate=test_data_rate)
        self.pytorch_dataset_body.data_body_gen()
         
        
        self.pytorch_dataset_text = CorpusDatasetPytorch.TextDataset(filenames, prompt_ending=prompt_ending, 
                                                    prompt_length=prompt_length, lower_case=self.lower_case,
                                                    val_data_rate=val_data_rate, test_data_rate=test_data_rate)
        
        self.pytorch_dataset_text.data_text_line_gen()
        
        self.val_pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset([])
        self.val_pytorch_dataset_text = CorpusDatasetPytorch.TextDataset([])
        
        self.val_pytorch_dataset_body.data = self.pytorch_dataset_body.validation_data
        self.val_pytorch_dataset_text.data = self.pytorch_dataset_text.validation_data
        
        self.pytorch_dataset_text.validation_data = []
        self.pytorch_dataset_body.validation_data = []
        
        self.test_pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset([])
        self.test_pytorch_dataset_text = CorpusDatasetPytorch.TextDataset([])
        
        self.test_pytorch_dataset_body.data = self.pytorch_dataset_body.test_data
        self.test_pytorch_dataset_text.data = self.pytorch_dataset_text.test_data
        
        self.pytorch_dataset_text.test_data = []
        self.pytorch_dataset_body.test_data = []
        
    def create_empty(self):
        """Create empty holder for possible load of processed data from file
        """
        self.pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset([])
        self.pytorch_dataset_text = CorpusDatasetPytorch.TextDataset([])
        self.val_pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset([])
        self.val_pytorch_dataset_text = CorpusDatasetPytorch.TextDataset([])
        self.test_pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset([])
        self.test_pytorch_dataset_text = CorpusDatasetPytorch.TextDataset([])
        
        
    @staticmethod
    def collate(batch, tokenizer: PreTrainedTokenizerBase ,max_len = 1024, max_context = 1024 ,mask_rate = 0.0, syllables: bool = False, format: str = 'METER_VERSE'):
        """Process data for usage in LM

        Args:
            batch (_type_): Batch with selected data points
            tokenizer (PreTrainedTokenizerBase): tokenizer to tokenize input text
            max_len (int, optional): Maximum length of tokenization. Defaults to 1024.
            max_context (int, optional): Maximum length of tokenization of context. Defaults to 1024.
            mask_rate (float, optional): Rate in with to mask data. Defaults to 0.0.
            syllables (bool, optional): If to use sequence of syllables as input text. Defaults to False.

        Returns:
            dict: tokenized and processed to tensors data
        """
        index = 1 if syllables else 0
        
        tokenizer.model_max_length = max_len
        if batch[0]['input_ids'][0].startswith("#"):
            
            data = [text['input_ids'][index] for text in batch]
            if format == "BASIC":
                data =  ["\n".join
                         (
                        [line + f" # {datum.splitlines()[1].split()[0]}"
                         if i==0 else line.split('#')[-1] for i, line in enumerate(datum.splitlines())] 
                        ) + tokenizer.eos_token  for j, datum in enumerate(data) 
                         ]
            elif format == "VERSE_PAR":
                 data =  ["\n".join
                         (
                        [line + f" # {datum.splitlines()[1].split()[0]}"
                         if i==0 else "#".join(line.split('#')[1:]) for i, line in enumerate(datum.splitlines())] 
                        ) + tokenizer.eos_token for j, datum in enumerate(data) 
                         ]
            else:
                data = [text['input_ids'][index] + tokenizer.eos_token for text in batch]
                 
            tokenized = tokenizer(data,return_tensors='pt', truncation=True, padding=True)
            input_ids = tokenized['input_ids']
            attention = tokenized["attention_mask"]
        
        else:
            tokenized = tokenizer([text['input_ids'][index] + tokenizer.eos_token for text in batch],return_tensors='pt', truncation=True, padding=True)
            input_ids = tokenized['input_ids']
            attention = tokenized["attention_mask"]
    
        
        nums = None
        if "nums" in batch[0].keys():
            nums = torch.tensor(np.asarray([text['nums'] for text in batch], dtype=np.int32), dtype=torch.float32)
            
        rhyme=None
        if "rhyme" in batch[0].keys():
            rhyme = torch.tensor(np.asarray([TextAnalysis._rhyme_vector(text["rhyme"]) for text in batch], dtype=np.int32), dtype=torch.float32)
        
        verse_end = None
        if "verse_end" in batch[0].keys():       
            verse_end = torch.tensor(np.asarray([CorpusDatasetPytorch.TextDataset._ending_vector(text["verse_end"]) for text in batch], dtype=np.int32), dtype=torch.float32)
        
        year = None
        if "year" in batch[0].keys():      
            year = torch.tensor(np.asarray([TextAnalysis._publish_year_vector(text["year"]) for text in batch], dtype=np.int32), dtype=torch.float32)
            
        metre = None
        if "metre" in batch[0].keys():       
            metre = torch.tensor(np.asarray([TextAnalysis._metre_vector(text["metre"]) for text in batch], dtype=np.int32), dtype=torch.float32)
        
        context_ids = None
        context_attention_mask = None
        if "context_ids" in batch[0].keys():
            tokenizer.model_max_length = max_context
            tokenized_context = tokenizer([text['context_ids'] + tokenizer.eos_token  for text in batch],return_tensors='pt', truncation=True, padding=True)
            context_ids = tokenized_context['input_ids']
            context_attention_mask = tokenized_context['attention_mask'] 
        
        return {
            "input_ids": input_ids,
            "labels": input_ids.type(torch.LongTensor),
            "attention_mask": attention,
            "context_ids" : context_ids,
            "context_attention_mask" : context_attention_mask,
            "nums" :  nums,
            "rhyme": rhyme,
            "verse_end" : verse_end,
            "year": year,
            "metre" : metre}
        
        
    @staticmethod
    def collate_distil(batch, tokenizer: PreTrainedTokenizerBase ,surrogate_model: PreTrainedModel = None,surrogate_model_device=None ,max_len = 1024):
        tokenizer.model_max_length = max_len
        tokenized = tokenizer([text['input_ids'][0] + tokenizer.eos_token for text in batch], return_tensors='pt', truncation=True, padding=True)
        input_ids = tokenized['input_ids']
        attention = tokenized["attention_mask"]
        
        with torch.no_grad():
            # This is Tuple
            model_hidden_states = surrogate_model(input_ids=input_ids.to(surrogate_model_device), 
                                                  attention_mask=attention.to(surrogate_model_device), 
                                                  labels=input_ids.type(torch.LongTensor).to(surrogate_model_device))['hidden_states']
        model_hidden_states = [hidden.cpu().detach() for hidden in model_hidden_states]
        
        return {
            "input_ids": input_ids,
            "labels": input_ids.type(torch.LongTensor),
            "attention_mask": attention,
            "to_replicate_states": model_hidden_states
         }
        
    @staticmethod
    def collate_validator(batch, tokenizer: PreTrainedTokenizerBase,syllables:bool, is_syllable:bool = False,max_len = 512):
        """Process data for use in LM for metre,rhyme and year prediction

        Args:
            batch (_type_): Batch with selected data points
            tokenizer (PreTrainedTokenizerBase): tokenizer to tokenize input text   
            syllables (bool): If to use sequence of syllables as input text
            is_syllable (bool, optional): Signal if the preprocessed inputs contain syllable data. Defaults to False.
            max_len (int, optional): Maximum length of tokenization. Defaults to 1024.

        Returns:
            dict: tokenized and processed to tensors data
        """
        index = 1 if syllables and is_syllable else 0
        tokenizer.model_max_length = max_len
        data_ids = ["\n".join(
            [" ".join(
                    SyllableMaker.syllabify(line.split('#')[-1])
                ) + (line[-1] if line[-1] in [',','.','!','?'] else '') if (syllables and not is_syllable and line) else line.split('#')[-1] for line in text['input_ids'][index].splitlines()[1:]] 
            ) for text in batch ]
        
        
        tokenized = tokenizer(data_ids, return_tensors='pt', truncation=True, padding=True)
        input_ids = tokenized['input_ids']
        attention = tokenized["attention_mask"]
            
        rhyme=None
        if "rhyme" in batch[0].keys():
            rhyme = torch.tensor(np.asarray([TextAnalysis._rhyme_vector(text["rhyme"]) for text in batch], dtype=np.int32), dtype=torch.float32)
            
        year_bucket = None
        year = None
        if "year" in batch[0].keys():      
            year_bucket = torch.tensor(np.asarray([TextAnalysis._publish_year_vector(text["year"]) for text in batch], dtype=np.int32), dtype=torch.float32)
            year = torch.tensor(np.asarray([ [int(text['year'])] if text['year'] != 'NaN' else [0] for text in batch], dtype=np.int32), dtype=torch.float32)
        
        return  {
            "input_ids": input_ids,
            "attention_mask": attention,
            "rhyme": rhyme,
            "metre_ids": None,
            "year_bucket": year_bucket,
            'year':year}
    
    @staticmethod
    def collate_meter(batch, tokenizer: PreTrainedTokenizerBase, syllables:bool, is_syllable:bool = False, max_len = 512):
        index = 1 if syllables and is_syllable else 0
        tokenizer.model_max_length = max_len
        data_ids = []
        metre = []
        for datum in batch:
            data_ids += [
                    " ".join(
                    SyllableMaker.syllabify(line.split('#')[-1]) 
                ) + (line[-1] if line[-1] in [',','.','!','?'] else '') if (syllables and not is_syllable and line) else line.split('#')[-1] for line in datum['input_ids'][index].splitlines()[1:]
                ]
            if "metre_ids" in batch[0].keys():
                metre += [TextAnalysis._metre_vector(one_metre) for one_metre in datum['metre_ids']]
                
        tokenized = tokenizer(data_ids, return_tensors='pt', truncation=True, padding=True)
        input_ids = tokenized['input_ids']
        attention = tokenized["attention_mask"]
        
        metre_ids = None
        if len(metre) > 0:
            metre_ids = torch.tensor(np.asarray(metre, dtype=np.int32), dtype=torch.float32)
            
        return  {
            "input_ids": input_ids,
            "attention_mask": attention,
            "rhyme": None,
            "metre_ids": metre_ids,
            "year_bucket": None,
            "year": None}
        
    
        
    def __init__(self, data_dir = "PoetGen\corpusCzechVerse-master\ccv", cache_dir='./', 
                 prompt_length=True, prompt_ending=True, prompt_verse=True, verse_len=[4,6], lower_case=True, val_data_rate=0.05, test_data_rate=0.05):
        """Construct the Dataloader and create Datasets

        Args:
            data_dir (str, optional): Path to data. Defaults to "PoetGen\corpusCzechVerse-master\ccv".
            cache_dir (str, optional): Path where to store processed data. Defaults to './'.
            prompt_length (bool, optional): If to prompt the syllable count. Defaults to True.
            prompt_ending (bool, optional): If to prompt verse ending. Defaults to True.
            prompt_verse (bool, optional): If to prompt rhyme schema. Defaults to True.
            verse_len (list, optional): Considered length of strophe. Defaults to [4,6].
            lower_case (bool, optional): If the string should be in lowercase. Defaults to True.
            val_data_rate (float, optional): Amount of data to be left for validation. Defaults to 0.1.
        """
        self.lower_case = lower_case
        self.data_dir = data_dir
        if  os.path.isfile(os.path.join(cache_dir, "body_poet_data.json")) and os.path.isfile(os.path.join(cache_dir, "text_poet_data.json")) \
            and os.path.isfile(os.path.join(cache_dir, "val_body_poet_data.json")) and os.path.isfile(os.path.join(cache_dir, "val_text_poet_data.json")) \
            and os.path.isfile(os.path.join(cache_dir, "test_body_poet_data.json")) and os.path.isfile(os.path.join(cache_dir, "test_text_poet_data.json")) :
            self.create_empty()
            self.pytorch_dataset_body.data =list(json.load( open( os.path.join(cache_dir, "body_poet_data.json"), 'r')))
            self.pytorch_dataset_text.data =list(json.load( open( os.path.join(cache_dir, "text_poet_data.json"), 'r')))
            self.val_pytorch_dataset_body.data = list(json.load( open( os.path.join(cache_dir, "val_body_poet_data.json"), 'r')))
            self.val_pytorch_dataset_text.data = list(json.load( open( os.path.join(cache_dir, "val_text_poet_data.json"), 'r')))
            self.test_pytorch_dataset_body.data = list(json.load( open( os.path.join(cache_dir, "test_body_poet_data.json"), 'r')))
            self.test_pytorch_dataset_text.data = list(json.load( open( os.path.join(cache_dir, "test_text_poet_data.json"), 'r')))
        else:
            self.load_json_filenames(prompt_length, prompt_ending, prompt_verse, verse_len=verse_len, val_data_rate=val_data_rate, test_data_rate=test_data_rate)
            json.dump(self.pytorch_dataset_body.data, open( os.path.join(cache_dir, "body_poet_data.json"), 'w+'), indent = 6)
            json.dump(self.pytorch_dataset_text.data, open( os.path.join(cache_dir, "text_poet_data.json"), 'w+'), indent = 6)
            json.dump(self.val_pytorch_dataset_body.data, open( os.path.join(cache_dir, "val_body_poet_data.json"), 'w+'), indent = 6)
            json.dump(self.val_pytorch_dataset_text.data, open( os.path.join(cache_dir, "val_text_poet_data.json"), 'w+'), indent = 6)
            json.dump(self.test_pytorch_dataset_body.data, open( os.path.join(cache_dir, "test_body_poet_data.json"), 'w+'), indent = 6)
            json.dump(self.test_pytorch_dataset_text.data, open( os.path.join(cache_dir, "test_text_poet_data.json"), 'w+'), indent = 6)
            
        self.load_raw_()
        
        
        
#if __name__ == "__main__":
# Line Count
#    print(len(list(CorpusDatasetPytorch(os.path.abspath(os.path.join(os.path.dirname(__file__), "corpusCzechVerse", "ccv")) ).raw_dataset.get_text())))
# Strophe Count
#    print(len(list(CorpusDatasetPytorch(os.path.abspath(os.path.join(os.path.dirname(__file__), "corpusCzechVerse", "ccv")) ).raw_dataset.get_part())))
# Poem Count
#    print(len(list(CorpusDatasetPytorch(os.path.abspath(os.path.join(os.path.dirname(__file__), "corpusCzechVerse", "ccv")) ).raw_dataset.get_body())))