File size: 10,872 Bytes
13cea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fead0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13cea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fead0d
13cea7c
 
 
2fead0d
 
 
13cea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import os
import torch
import numpy as np

import sys

from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedTokenizerFast
from utils.poet_utils import StropheParams, Tokens, TextManipulation, TextAnalysis
from utils.base_poet_models import PoetModelBase
from utils.validators import ValidatorInterface

from corpus_capsulated_datasets import CorpusDatasetPytorch

parser = argparse.ArgumentParser()

parser.add_argument("--model_path_full", default='jinymusim/gpt-czech-poet',  type=str, help="Path to Model")

parser.add_argument("--rhyme_model_path_full", default=os.path.abspath(os.path.join(os.path.dirname(__file__), 'utils', 'validators', 'rhyme', 'distilroberta-base_BPE_validator_1704126399565')),  type=str, help="Path to Model")
parser.add_argument("--metre_model_path_full", default=os.path.abspath(os.path.join(os.path.dirname(__file__), 'utils' ,"validators", 'meter', 'ufal-robeczech-base_BPE_validator_1704126400265')),  type=str, help="Path to Model")
parser.add_argument("--year_model_path_full", default=os.path.abspath(os.path.join(os.path.dirname(__file__), 'utils' ,"validators", 'year', 'ufal-robeczech-base_BPE_validator_1702393305267')),  type=str, help="Path to Model")

parser.add_argument("--validator_tokenizer_model_rhyme", default='distilroberta-base', type=str, help="Validator tokenizer")
parser.add_argument("--validator_tokenizer_model_meter", default='ufal/robeczech-base', type=str, help="Validator tokenizer")
parser.add_argument("--validator_tokenizer_model_year", default='ufal/robeczech-base', type=str, help="Validator tokenizer")
parser.add_argument("--val_syllables_rhyme", default=False, type=bool, help="Does validator use syllables")
parser.add_argument("--val_syllables_meter", default=False, type=bool, help="Does validator use syllables")
parser.add_argument("--val_syllables_year", default=False, type=bool, help="Does validator use syllables")


if __name__ == "__main__":
    args = parser.parse_args([] if "__file__" not in globals() else None)
    
_ ,model_rel_name =  os.path.split(args.model_path_full)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = PoetModelBase(args.model_path_full).to(device)
model.eval()

rhyme_model, meter_model, year_model = None, None, None
rhyme_model_name, meter_model_name, year_model_name = "", "", ""
if args.rhyme_model_path_full:
    rhyme_model: ValidatorInterface = (torch.load(args.rhyme_model_path_full, map_location=torch.device('cpu'))).to(device)
    rhyme_model.eval()
    _,  rhyme_model_name = os.path.split(args.rhyme_model_path_full)

if args.metre_model_path_full:
    meter_model: ValidatorInterface = (torch.load(args.metre_model_path_full, map_location=torch.device('cpu'))).to(device)
    meter_model.eval()
    _, meter_model_name = os.path.split(args.metre_model_path_full)
    
if args.year_model_path_full:
    year_model: ValidatorInterface = (torch.load(args.year_model_path_full, map_location=torch.device('cpu'))).to(device)
    year_model.eval()
    _,  year_model_name = os.path.split(args.year_model_path_full)
# Load Rhyme tokenizer
validator_tokenizer_rhyme: PreTrainedTokenizerBase = None
if args.validator_tokenizer_model_rhyme:
    try:
        validator_tokenizer_rhyme = AutoTokenizer.from_pretrained(args.validator_tokenizer_model_rhyme)
    except:
        validator_tokenizer_rhyme: PreTrainedTokenizerBase = PreTrainedTokenizerFast(tokenizer_file=args.validator_tokenizer_model_rhyme)
        validator_tokenizer_rhyme.eos_token = Tokens.EOS
        validator_tokenizer_rhyme.eos_token_id = Tokens.EOS_ID
        validator_tokenizer_rhyme.pad_token = Tokens.PAD
        validator_tokenizer_rhyme.pad_token_id = Tokens.PAD_ID
        validator_tokenizer_rhyme.unk_token = Tokens.UNK
        validator_tokenizer_rhyme.unk_token_id = Tokens.UNK_ID
        validator_tokenizer_rhyme.cls_token = Tokens.CLS
        validator_tokenizer_rhyme.cls_token_id = Tokens.CLS_ID
        validator_tokenizer_rhyme.sep_token = Tokens.SEP
        validator_tokenizer_rhyme.sep_token_id = Tokens.SEP_ID
        
# Load Meter tokenizer
validator_tokenizer_meter: PreTrainedTokenizerBase = None
if args.validator_tokenizer_model_meter:
    try:
        validator_tokenizer_meter = AutoTokenizer.from_pretrained(args.validator_tokenizer_model_meter, revision='v1.0')
    except:
        validator_tokenizer_meter: PreTrainedTokenizerBase = PreTrainedTokenizerFast(tokenizer_file=args.validator_tokenizer_model_meter)
        validator_tokenizer_meter.eos_token = Tokens.EOS
        validator_tokenizer_meter.eos_token_id = Tokens.EOS_ID
        validator_tokenizer_meter.pad_token = Tokens.PAD
        validator_tokenizer_meter.pad_token_id = Tokens.PAD_ID
        validator_tokenizer_meter.unk_token = Tokens.UNK
        validator_tokenizer_meter.unk_token_id = Tokens.UNK_ID
        validator_tokenizer_meter.cls_token = Tokens.CLS
        validator_tokenizer_meter.cls_token_id = Tokens.CLS_ID
        validator_tokenizer_meter.sep_token = Tokens.SEP
        validator_tokenizer_meter.sep_token_id = Tokens.SEP_ID
        
# Load Year tokenizer
validator_tokenizer_year: PreTrainedTokenizerBase = None
if args.validator_tokenizer_model_year:
    try:
        validator_tokenizer_year = AutoTokenizer.from_pretrained(args.validator_tokenizer_model_year, revision='v1.0')
    except:
        validator_tokenizer_year: PreTrainedTokenizerBase = PreTrainedTokenizerFast(tokenizer_file=args.validator_tokenizer_model_year)
        validator_tokenizer_year.eos_token = Tokens.EOS
        validator_tokenizer_year.eos_token_id = Tokens.EOS_ID
        validator_tokenizer_year.pad_token = Tokens.PAD
        validator_tokenizer_year.pad_token_id = Tokens.PAD_ID
        validator_tokenizer_year.unk_token = Tokens.UNK
        validator_tokenizer_year.unk_token_id = Tokens.UNK_ID
        validator_tokenizer_year.cls_token = Tokens.CLS
        validator_tokenizer_year.cls_token_id = Tokens.CLS_ID
        validator_tokenizer_year.sep_token = Tokens.SEP
        validator_tokenizer_year.sep_token_id = Tokens.SEP_ID
 
# Load LM tokenizers       
tokenizer: PreTrainedTokenizerBase =  AutoTokenizer.from_pretrained(args.model_path_full)

generation = "BASIC"

def decoder_helper(type, user_input):
    if type == "BASIC":
        tokenized = tokenizer.encode(user_input, return_tensors='pt', truncation=True)
        out = model.model.generate(tokenized.to(device), 
                                        max_length=512,
                                        do_sample=True,
                                        top_k=50,
                                        eos_token_id = tokenizer.eos_token_id,
                                        early_stopping=True,
                                        pad_token_id= tokenizer.pad_token_id)
        return tokenizer.decode(out.cpu()[0], skip_special_tokens=True)
    if type=="FORCED":
        return model.generate_forced(user_input, tokenizer, sample=True, device=device)
    
help = f"""Current setting is {generation} generating.
        Change it by writing FORCED/BASIC to input.
        Type HELP for HELP.
        Type EXIT to exit.
        
        Supported input consist of:
        # RHYME_SCHEMA # YEAR
        METER # NUM_SYLLABLES # ENDING #
        
        FORCED generation supports incomplete verse input of
        J # 13 #
        D # 11 # na #
        
        Each verse parameter must be followed by # to be properly analyzed.
        
        IMPORTANT! After inputing prompt (Excluding HELP/EXIT/FORCED/BASIC), user MUST input empty line to finish the prompt!
"""
  
print("Welcome to simple czech strophe generation.", help)
  
while True:
    
    user_input = ""
    while True:
        curr_line =  input(">").strip()
        if curr_line == 'EXIT':
            sys.exit()
        elif curr_line == "HELP":
            print(help)
            continue
        elif curr_line == "BASIC":
            print("Changed to BASIC")
            generation = 'BASIC'
            continue
        elif curr_line == "FORCED":
            print("Changed to FORCED")
            generation = "FORCED"
            continue
        if not curr_line:
            break
        user_input +=  curr_line + "\n"
        
    user_input = user_input.strip()
    user_reqs = model.analyze_prompt(user_input)
    
    if "RHYME" not in user_reqs.keys() and generation == "BASIC" and user_input:
        print("BASIC generation can't work with imputed format.", help)
        print("User input is substituted for #")
        user_input = '#'
    if not user_input:
        print("No input, reverting to #")
        user_input = '#'
    
    generated_poem:str = decoder_helper(generation, user_input)
    
    # Predictions
    meters = []
    rhyme_pred = ''
    year_pred = 0
    for line in generated_poem.splitlines():
        # Skip Empty lines
        if not line.strip(): 
            break
        if not (TextManipulation._remove_most_nonchar(line)).strip():
            break
        # Validate for Strophe Parameters
        if TextAnalysis._is_param_line(line):
            data = CorpusDatasetPytorch.collate_validator([{"input_ids" :[generated_poem]}],tokenizer=validator_tokenizer_rhyme,
                                                               is_syllable=False, syllables=args.val_syllables_rhyme,
                                                               max_len=rhyme_model.model.config.max_position_embeddings - 2)
            rhyme_pred =StropheParams.RHYME[np.argmax(rhyme_model.predict_state(input_ids=data['input_ids'].to(device)).detach().flatten().cpu().numpy())]
            data = CorpusDatasetPytorch.collate_validator([{"input_ids" :[generated_poem]}],tokenizer=validator_tokenizer_year,
                                                               is_syllable=False, syllables=args.val_syllables_year,
                                                               max_len=year_model.model.config.max_position_embeddings - 2)
            year_pred = round(year_model.predict_state(input_ids=data['input_ids'].to(device)).detach().flatten().cpu().numpy()[0])
            continue
        data = CorpusDatasetPytorch.collate_meter([{"input_ids" :["FIRST LINE SKIP!\n" + line]}],tokenizer=validator_tokenizer_meter,
                                                           is_syllable=False, syllables=args.val_syllables_meter,
                                                           max_len=meter_model.model.config.max_position_embeddings - 2)
        meters.append(
            StropheParams.METER[np.argmax(meter_model.predict_state(input_ids=data['input_ids'].to(device)).detach().flatten().cpu().numpy())]
        )
    print(f"REQUESTED: {user_reqs}, GENERATED USING: {generation}\n")
    print(generated_poem.strip())
    print(f"PREDICTED: {rhyme_pred}, {year_pred}, {meters}\n\n")