File size: 20,217 Bytes
13cea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
class StropheParams:
    

    # Most Common Rhyme Schemas (Every Rhyme schema with presence over 0.36 %)
    RHYME_SCHEMES = ['ABAB', 'XXXX',
                 'XAXA','AABB', 
                 'XXXXXX','ABBA', 
                 'AAXX', 'AABBCC',
                 'ABABCC','ABABXX',
                 'AABCCB','XXAA', 
                 'XAAX', 'AXAX', 
                 'XAXAXX','XXABAB',
                 'ABBACC','AXAA', 
                 'XAABBX','AABCBC',
                 'AABBXX','ABBAXX',
                 'ABABAB','AAXA', 
                 'AXXA','XAXABB',
                 'XXAABB','XXAAXX',
                 'ABABAX','XXABBA',
                 'AAXBBX','XXXAXA',
                 'AAAX','XABABX',
                 'XABBAX','AAXXBB',
                 'AXABBX','ABABBX',
                 'XAAXBB','AAAA',
                 'XAAA','XAABXB',
                 'AXABXB','AXAXBB',
                  None]
    
    RHYME = RHYME_SCHEMES


    NORMAL_SCHEMES = ["ABAB", "ABBA", "AABB", "AABBCC", "ABABCC", "ABBACC", "ABBAAB"]

    # First 200 Most common endings
    VERSE_ENDS = ['ní', 'la', 'je', 'tí', 'ce', 'ti', 'ky', 'ku', 'li', 'jí', 'ně', 'né', 'vá', 'se', 'ny', 'ly', 'na', 'ne', 'nou', 
              'lo', 'ci', 'mi', 'ný', 'sti', 'ka', 'le', 'cí', 'ná', 'ží', 'čí', 'ho', 'dí', 'ší', 'du', 'lí', 'dy', 'nu', 'ří', 
              'ji', 'ru', 'tě', 'ře', 'stí', 'vy', 'ká', 'še', 'dá', 'ni', 'te', 'ví', 'mu', 'tu', 'ta', 'vé', 'val', 'va', 'lý', 
              'tá', 'že', 'ty', 'no', 'vu', 'lá', 'kem', 'chu', 'ků', 'bě', 'vý', 'sy', 'me', 'zí', 'hu', 'vě', 'lu', 'da', 'ry', 
              'rá', 'lé', 'ko', 'ři', 'de', 'hy', 'lem', 'tem', 'kou', 'vou', 'ši', 'há', 'sí', 'ze', 'be', 'ra', 'má', 'to', 'by', 
              'mě', 'su', 'té', 'si', 'ných', 'den', 'či', 'ký', 'ním', 'če', 'tý', 'ma', 'my', 'sem', 'nem', 'dě', 'ha', 'vat', 'ným', 
              'dem', 'dou', 'sta', 'dla', 'svět', 'zem', 'jen', 'dal', 'mí', 'hou', 'zas', 'sen', 'rem', 'nů', 'bu', 'e', 'ba', 'ké', 
              'til', 'jest', 'ství', 'děl', 'květ', 'tů', 'chem', 'lou', 'sám', 'bí', 'tou', 'dé', 'šel', 'nul', 'chá', 'vem', 'sa', 
              'hlas', 'pí', 'čas', 'dil', 'let', 'cích', 'lů', 'žil', 'mů', 'dál', 'cha', 'byl', 'nost', 'ček', 'zy', 'hý', 'nám', 'di', 
              'bou', 'tím', 'ži', 'tek', 'vil', 'jsem', 'sů', 'dech', 'men', 'tla', 'sá', 'zrak', 'chy', 'vám', 'vi', 'dý', 'rád', 'svou', 
              'ném', 've', 'py', 'vo', 'vým', 'nek', 'již', 'víc', 'kal', 'mé', 'dů', 'stá', 'dnes', 'sty', 'ven', None]
    ENDS = VERSE_ENDS
    # Years to bucket to
    POET_YEARS_BUCKETS = [1800, 1820, 1840, 1860, 1880, 1900, 1920, 1940, 1960, None]
    POET_YEARS = POET_YEARS_BUCKETS
    YEAR = POET_YEARS_BUCKETS
    # Possible Meter Types
    METER_TYPES = ["J","T","D","A","X","Y","N","H","P", None]
    METER = METER_TYPES
    # Translation of Meter to one char types
    METER_TRANSLATE = {
        "J":"J",
        "T":"T",
        "D":"D",
        "A":"A",
        "X":"X",
        "Y":"Y",
        "hexameter": "H",
        "pentameter": "P",
        "N":"N"
    }
    
    # Basic Characters to consider in rhyme and syllables (43)
    VALID_CHARS = [""," ",'a','á','b','c','č','d','ď','e','é','ě',
               'f','g','h','i','í','j','k','l','m','n','ň',
               'o','ó','p','q','r','ř','s','š','t','ť','u',
               'ú','ů','v','w','x','y','ý','z','ž']
    CHARS = VALID_CHARS
class Tokens:
# Tokenizers Special Tokens
    EOS = "<|EOS|>"
    EOS_ID = 0
    PAD = "<|PAD|>"
    PAD_ID = 1
    UNK = "<|UNK|>"
    UNK_ID = 2
    CLS = "<|CLS|>"
    CLS_ID = 3
    # SEP Token is EOS Token
    SEP = EOS
    SEP_ID = 0
    
    ALL_TOKENS = {
        EOS : 0,
        PAD : 1,
        UNK : 2,
        CLS : 3,
    }



import re
import numpy as np

def parse_boolean(value):
    value = value.lower()

    if value in ["true", "yes", "y", "1", "t"]:
        return True
    elif value in ["false", "no", "n", "0", "f"]:
        return False

    return False

class TextManipulation:
    """Static class for string manipulation methods

    Returns:
        _type_: str returned by all methods
    """
        
    @staticmethod
    def _remove_most_nonchar(raw_text, lower_case=True):
        """Remove most non-alpha non-whitespace characters

        Args:
            raw_text (str): Text to manipulate
            lower_case (bool, optional): If resulting text should be lowercase. Defaults to True.

        Returns:
            str: Cleaned up text
        """
        text = re.sub(r'[–\„\“\’\;\:()\]\[\_\*\‘\”\'\-\—\"]+', "", raw_text)
        return text.lower() if lower_case else text
    
    @staticmethod
    def _remove_all_nonchar(raw_text):
        """Remove all possible non-alpha characters

        Args:
            raw_text (str): Text to manipulate

        Returns:
            str: Cleaned up text
        """
        sub = re.sub(r'([^\w\s]+|[0-9]+)', '', raw_text)
        return sub
    
    @staticmethod
    def _year_bucketor(raw_year):
        """Bucketizes year string to boundaries, Bad inputs returns NaN string

        Args:
            raw_year (str): Year string to bucketize

        Returns:
            _type_: Bucketized year string
        """
        if TextAnalysis._is_year(raw_year) and raw_year != "NaN":
            year_index = np.argmin(np.abs(np.asarray(StropheParams.YEAR[:-1]) - int(raw_year)))
            return str(StropheParams.YEAR[year_index])
        else:
            return "NaN"
        
    _RHYME_POS = ["A", "B", "C", "D", "E", "F", "G", "H"]
        
    @staticmethod
    def rhyme_sec(rhyme_ref, current_rhyme):
        """Return proper rhyme indicator to given reference
        
        Args:
            rhyme_ref (_type_): reference number of 'A'
            current_rhyme (_type_): current rhyme number that needs inidcation
            
        Returns:
            str: rhyme indicator character
        """
        
        return "X" if current_rhyme == None or current_rhyme== -1 or rhyme_ref == None or current_rhyme < rhyme_ref or current_rhyme >= rhyme_ref + len(TextManipulation._RHYME_POS) else TextManipulation._RHYME_POS[current_rhyme - rhyme_ref]
        
    @staticmethod
    def __post_process_rhyme(rhyme_str: str):
        # First Pass
        marker_count = {marker: rhyme_str.count(marker) for marker in TextManipulation._RHYME_POS}
        for key, val in marker_count.items():
            # Replace all, that ocurr only once with X
            if val == 1:
                rhyme_str = re.sub(key, 'X', rhyme_str)
        # Downscale higher to lower if lower not present
        marker_count = {marker: rhyme_str.count(marker) for marker in TextManipulation._RHYME_POS}
        for key, val in marker_count.items():
            if val > 1 and key != 'X':
                key_index = TextManipulation._RHYME_POS.index(key)
                replacements = {marker: rhyme_str.count(marker) for marker in TextManipulation._RHYME_POS[:key_index]}
                for rep_key, rep_val in replacements.items():
                    if rep_val ==0:
                        rhyme_str = re.sub(key, rep_key, rhyme_str)
                        break
                    
        # Pass to swap letters
        marker_index = {marker: rhyme_str.find(marker) for marker in TextManipulation._RHYME_POS if rhyme_str.find(marker) != -1}
        keys_values = marker_index.items()
        keys = [v[0] for v in keys_values]
        values = [v[1] for v in keys_values]
       
        i = 0
        while i < len(keys):
            j= 0
            while j< len(keys):
                if TextManipulation._RHYME_POS.index(keys[j]) > TextManipulation._RHYME_POS.index(keys[i]) and values[j] < values[i]:
                    # Swap the positions
                    rhyme_str = re.sub(keys[j], 'Z', rhyme_str)
                    rhyme_str = re.sub(keys[i], keys[j], rhyme_str)
                    rhyme_str = re.sub('Z', keys[i], rhyme_str)
                    # Need to update the value
                    temp = values[i]
                    values[i]= values[j]
                    values[j] = temp
                j+=1
            i+=1
        
            
        return rhyme_str
            
        
    @staticmethod
    def _rhyme_string(curr_rhyme_list):
        """Translate rhyme as list of rhyming number to rhyme schema

        Args:
            curr_rhyme_list (list): Current rhyme as list of ints indicating rhyming verses

        Returns:
            str: Rhyme schema
        """
        rhyme_list = curr_rhyme_list.copy()
        reference = None
        # Give None a blank -1 rhyme id
        for i in range(len(rhyme_list)):
            if rhyme_list[i] != None and reference == None:
                reference = rhyme_list[i]
            elif rhyme_list[i] != None and rhyme_list[i] < reference:
                reference = rhyme_list[i]
            elif rhyme_list[i] == None:
                 rhyme_list[i] = -1
        
        # With more robust post processing, this is may not needed
               
        # if there is valid rhyme, normalize 
        if reference != None:
            # sort the rhyme and get index of reference number
            cheat_sheet =  sorted(list(set(rhyme_list[:])))
            ref_index = cheat_sheet.index(reference)
            # normalize the rest around this reference
            for i in range(len(rhyme_list)):
                idx = cheat_sheet.index(rhyme_list[i])
                rhyme_list[i] = reference + (idx - ref_index)
        
                
        rhyme_str = ""
        for num in rhyme_list:
           rhyme_str += TextManipulation.rhyme_sec(reference, num)
        
        return TextManipulation.__post_process_rhyme(rhyme_str)

class TextAnalysis:
    """Static class with methods of analysis of strings

    Returns:
        Union[str, bool, dict, numpy.ndarray]: Analyzed input
    """
    
    # Possible Keys if returned type is dict
    POET_PARAM_LIST = ["RHYME", "YEAR", "METER", "LENGTH", "END", "TRUE_LENGTH", "TRUE_END"]
    
    @staticmethod
    def _is_meter(meter:str):
        """Return if string is meter type

        Args:
            meter (str): string to analyze

        Returns:
            bool: If string is meter type
        """
        return meter in StropheParams.METER[:-1]
    
    @staticmethod
    def _is_year(year:str):
        """Return if string is year or special NaN

        Args:
            year (str): string to analyze

        Returns:
            bool: If string is year or special NaN
        """
        return (year.isdecimal() and int(year) > 1_000 and int(year) < 10_000) or year == "NaN"
    
    @staticmethod
    def _rhyme_like(rhyme:str):
        """Return if string is structured like rhyme schema

        Args:
            rhyme (str): string to analyze

        Returns:
            bool: If string is structured like rhyme schema
        """
        return (rhyme.isupper() and len(rhyme) >= 3 and len(rhyme) <= 6)
    
    @staticmethod
    def _rhyme_vector(rhyme:str) -> np.ndarray:
        """Create One-hot encoded rhyme schema vector from given string

        Args:
            rhyme (str): string to construct vector from 

        Returns:
            numpy.ndarray: One-hot encoded rhyme schema vector
        """
        
        rhyme_vec = np.zeros(len(StropheParams.RHYME))
        if rhyme in StropheParams.RHYME:
            rhyme_vec[StropheParams.RHYME.index(rhyme)] = 1
        else:
            rhyme_vec[-1] = 1
            
        return rhyme_vec
    
    
    @staticmethod
    def _publish_year_vector(year_string):
        """Construct vector of year of publishing, weighting by distance

        Args:
            year_string (str): String with publish year

        Returns:
            numpy.ndarray: Vector of bucketized One-hot encoded publish year
        """
        publish_year = None if not year_string.isdigit() else int(year_string)
        publish_vector = np.zeros(len(StropheParams.YEAR))
        if publish_year == None:
            publish_vector[-1] = 1
        else:
            # Distance Part
            #distance_weighting = [1/(1 + abs(year - publish_year)) for year in POET_YEARS_BUCKETS[:-1]] + [0]
            #publish_vector = np.asarray(distance_weighting)
            # Correct class correction
            publish_vector[np.argmin( abs(np.asarray(StropheParams.YEAR[:-1]) - publish_year))] += 1
            # Normalize
            #publish_vector = publish_vector/np.sum(publish_vector)
        return publish_vector  
    
    @staticmethod
    def _rhyme_or_not(rhyme_str:str) -> np.ndarray:
        """Create vector if given rhyme string is in our list of rhyme schemas

        Args:
            rhyme_str (str): string to construct vector from 

        Returns:
            numpy.ndarray: Boolean flag vector
        """
        rhyme_vector = np.zeros(2)
        if rhyme_str in StropheParams.RHYME:
            rhyme_vector[0] = 1
        else:
            rhyme_vector[1] = 1
        return rhyme_vector
        
    @staticmethod
    def _metre_vector(metre: str) -> np.ndarray:
        """Create One-hot encoded metre vector from given string

        Args:
            metre (str): string to construct vector from 

        Returns:
            numpy.ndarray: One-hot encoded metre vector
        """
        metre_vec = np.zeros(len(StropheParams.METER))
        if metre in StropheParams.METER:
            metre_vec[StropheParams.METER.index(metre)] = 1
        else:
            metre_vec[-1] = 1            
        return metre_vec
    
    @staticmethod
    def _first_line_analysis(text:str):
        """Analysis of parameter line for RHYME, METER, YEAR

        Args:
            text (str): parameter line string

        Returns:
            dict: Dictionary with analysis result
        """
        line_striped = text.strip()
        if not line_striped:
            return {}
        poet_params = {}
        # Look for each possible parameter
        for param in line_striped.split():
            if TextAnalysis._is_year(param):
                # Year is Bucketized so to fit
                poet_params["YEAR"] = TextManipulation._year_bucketor(param) 
            elif TextAnalysis._rhyme_like(param):
                poet_params["RHYME"] = param
            elif TextAnalysis._is_meter(param):
                poet_params["STROPHE_METER"] = param
        return poet_params
    
    @staticmethod
    def _is_line_length(length:str):
        """Return if string is number of syllables parameter

        Args:
            length (str): string to analyze

        Returns:
            bool: If string is number of syllables parameter
        """
        return length.isdigit() and int(length) > 1 and int(length) < 100
    
    @staticmethod
    def _is_line_end(end:str):
        """Return if string is valid ending syllable/sequence parameter

        Args:
            end (str): string to analyze

        Returns:
            bool: If string is valid ending syllable/sequence parameter
        """
        return end.isalpha() and end.islower() and len(end) <= 5
    
    @staticmethod
    def _continuos_line_analysis(text:str):
        """Analysis of Content lines for LENGTH, TRUE_LENGTH, END, TRUE_END

        Args:
            text (str): content line to analyze

        Returns:
            dict: Dictionary with analysis result
        """
        # Strip line of most separators and look if its empty
        line_striped = TextManipulation._remove_most_nonchar(text, lower_case=False).strip()
        if not line_striped:
            return {}
        line_params = {}
        # OLD MODEL
        if text.count('#') == 0: # BASIC
            pass
        else:
            for param_group in text.split('#')[:-1]:
                for param in param_group.split():
                    if TextAnalysis._is_meter(param.strip()):
                        line_params["METER"] = param.strip()
                    elif TextAnalysis._is_line_length(param.strip()):
                        line_params["LENGTH"] = int(param.strip())
                    elif TextAnalysis._is_line_end(param.strip()):
                        line_params["END"] = param.strip()
                    
                        
        line_params["TRUE_LENGTH"] = len(SyllableMaker.syllabify(line_striped.split('#')[-1]))     
        line_only_char = TextManipulation._remove_all_nonchar(line_striped).strip()
        if len(line_only_char) > 2:
            line_params["TRUE_END"] = SyllableMaker.syllabify(" ".join(line_only_char.split()[-2:]))[-1]
        
        return line_params
    
    @staticmethod
    def _is_param_line(text:str):
        """Return if line is a Parameter line (Parameters RHYME, METER, YEAR)

        Args:
            text (str): line to analyze

        Returns:
            bool: If line is a Parameter line
        """
        line_striped = text.strip()
        if not line_striped:
            return False
        small_analysis = TextAnalysis._first_line_analysis(line_striped)
        return  "RHYME" in small_analysis.keys() or "YEAR" in small_analysis.keys()

class SyllableMaker:
    """Static class with methods for separating string to list of Syllables

    Returns:
        list: List of syllables
    """
    
        
# NON-Original code!
# Taken from Barbora Štěpánková

    @staticmethod
    def syllabify(text : str) -> list[str]:
        words = re.findall(r"[aábcčdďeéěfghiíjklmnňoópqrřsštťuúůvwxyýzžAÁBCČDĎEÉĚFGHIÍJKLMNŇOÓPQRŘSŠTŤUÚŮVWXYÝZŽäöüÄÜÖ]+", text)
        syllables : list[str] = []

        i = 0
        while i < len(words):
            word = words[i]

            if (word.lower() == "k" or word.lower() == "v" or word.lower() == "s" or word.lower() == "z") and i < len(words) - 1 and len(words[i + 1]) > 1:
                i += 1
                word = word + words[i]

            letter_counter = 0

            # Get syllables: mask the word and split the mask
            for syllable_mask in SyllableMaker.__split_mask(SyllableMaker.__create_word_mask(word)):
                word_syllable = ""
                for character in syllable_mask:
                    word_syllable += word[letter_counter]
                    letter_counter += 1

                syllables.append(word_syllable)

            i += 1

        return syllables


    @staticmethod
    def __create_word_mask(word : str) -> str:
        word = word.lower()

        vocals = r"[aeiyouáéěíýóůúäöü]"
        consonants = r"[bcčdďfghjklmnňpqrřsštťvwxzž]"

        replacements = [
            #double letters
    		('ch', 'c0'),
    		('rr', 'r0'),
            ('ll', 'l0'),
    		('nn', 'n0'),
    		('th', 't0'),

            # au, ou, ai, oi
    		(r'[ao]u', '0V'),
            (r'[ao]i','0V'),

            # eu at the beginning of the word
    		(r'^eu', '0V'),
    
            # now all vocals
    		(vocals, 'V'),

            # r,l that act like vocals in syllables
    		(r'([^V])([rl])(0*[^0Vrl]|$)', r'\1V\3'),

            # sp, st, sk, št, Cř, Cl, Cr, Cv
    		(r's[pt]', 's0'),
    		(r'([^V0lr]0*)[řlrv]', r'\g<1>0'),
    		(r'([^V0]0*)sk', r'\1s0'),
    		(r'([^V0]0*)št', r'\1š0'),

    		(consonants, 'K')
    	]

        for (original, replacement) in replacements:
            word = re.sub(original, replacement, word)

        return word


    @staticmethod
    def __split_mask(mask : str) -> list[str]:
        replacements = [
    		# vocal at the beginning
    		(r'(^0*V)(K0*V)', r'\1/\2'),
    		(r'(^0*V0*K0*)K', r'\1/K'),

    		# dividing the middle of the word
    		(r'(K0*V(K0*$)?)', r'\1/'),
    		(r'/(K0*)K', r'\1/K'),
    		(r'/(0*V)(0*K0*V)', r'/\1/\2'),
    		(r'/(0*V0*K0*)K', r'/\1/K'),

    		# add the last consonant to the previous syllable
    		(r'/(K0*)$', r'\1/')
    	]

        for (original, replacement) in replacements:
            mask = re.sub(original, replacement, mask)

        if len(mask) > 0 and mask[-1] == "/":
            mask = mask[0:-1]

        return mask.split("/")