|
import torch |
|
import transformers |
|
import jellyfish |
|
from tqdm import tqdm |
|
from transformers import AutoModelForMaskedLM |
|
from transformers.utils import ModelOutput |
|
import numpy as np |
|
from .poet_utils import StropheParams |
|
|
|
from torch.utils.data import DataLoader, Dataset |
|
from pytorch_optimizer import SAM |
|
|
|
class ValidatorInterface(torch.nn.Module): |
|
"""Pytorch Model Interface. Abstract class for all validators |
|
|
|
Args: |
|
torch (_type_): Is child of torch.nn.Module for integration with torch and huggingface |
|
""" |
|
def __init__(self, *args, **kwargs) -> None: |
|
""" Constructor. As child Class needs to construct Parent |
|
""" |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self, input_ids=None, attention_mask=None, *args, **kwargs): |
|
"""Compute model output and model loss |
|
|
|
Args: |
|
input_ids (_type_, optional): Model inputs. Defaults to None. |
|
attention_mask (_type_, optional): Attention mask where padding starts. Defaults to None. |
|
|
|
Raises: |
|
NotImplementedError: Abstract class |
|
""" |
|
raise NotImplementedError() |
|
|
|
def predict_state(self, input_ids=None, *args, **kwargs): |
|
"""Compute model outputs |
|
|
|
Args: |
|
input_ids (_type_, optional): Model inputs. Defaults to None. |
|
|
|
Raises: |
|
NotImplementedError: Abstract class |
|
""" |
|
raise NotImplementedError() |
|
|
|
def validate_model(self, input_ids=None, *args, **kwargs): |
|
"""Validate model given some labels, Doesn't use loss |
|
|
|
Args: |
|
input_ids (_type_, optional): Model inputs. Defaults to None. |
|
|
|
Raises: |
|
NotImplementedError: Abstract class |
|
""" |
|
raise NotImplementedError() |
|
|
|
|
|
class RhymeValidator(ValidatorInterface): |
|
def __init__(self, pretrained_model, *args, **kwargs) -> None: |
|
super().__init__(*args, **kwargs) |
|
|
|
self.model = AutoModelForMaskedLM.from_pretrained(pretrained_model, output_hidden_states=True) |
|
|
|
self.config = self.model.config |
|
|
|
self.model_size = self.config.hidden_size |
|
|
|
self.rhyme_regressor = torch.nn.Linear(self.model_size, len(StropheParams.RHYME)) |
|
|
|
self.loss_fnc = torch.nn.CrossEntropyLoss(label_smoothing=0.0, weight=torch.tensor([1, 1, 1.5, 1.5, 1.5, 1.5, |
|
2, 2, 2, 3, 3, 3, |
|
3, 3, 3, 3, 4, 4, |
|
5, 5, 5, 5, 7, 7, |
|
7, 7, 7, 8, 8, 8, |
|
9, 9, 9, 10, 10, 10, |
|
12,12, 12, 12, 12, 12, |
|
15,15,1.5]) ) |
|
|
|
def forward(self, input_ids=None, attention_mask=None, rhyme=None, *args, **kwargs): |
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids.type(torch.LongTensor)) |
|
|
|
last_hidden = outputs['hidden_states'][-1] |
|
|
|
rhyme_regression = self.rhyme_regressor((last_hidden[:,0,:].view(-1, self.model_size))) |
|
|
|
softmaxed = torch.softmax(rhyme_regression, dim=1) |
|
rhyme_loss = self.loss_fnc(softmaxed, rhyme) |
|
|
|
return ModelOutput(loss=rhyme_loss + outputs.loss, model_output=softmaxed) |
|
|
|
def predict_state(self, input_ids=None, *args, **kwargs): |
|
|
|
outputs = self.model(input_ids=input_ids) |
|
|
|
last_hidden = outputs['hidden_states'][-1] |
|
|
|
rhyme_regression = self.rhyme_regressor((last_hidden[:,0,:].view(-1, self.model_size))) |
|
|
|
softmaxed = torch.softmax(rhyme_regression, dim=1) |
|
|
|
return softmaxed |
|
|
|
def validate_model(self, input_ids=None, rhyme=None, k:int = 2,*args, **kwargs): |
|
outputs = self.model(input_ids=input_ids) |
|
|
|
last_hidden = outputs['hidden_states'][-1] |
|
|
|
rhyme_regression = self.rhyme_regressor((last_hidden[:,0,:].view(-1, self.model_size))) |
|
|
|
softmaxed = torch.softmax(rhyme_regression, dim=1) |
|
|
|
softmaxed = softmaxed.flatten().cpu() |
|
|
|
predicted_val = torch.argmax(softmaxed) |
|
|
|
predicted_top_k = torch.topk(softmaxed, k).indices |
|
|
|
label_val = torch.argmax(rhyme.flatten()) |
|
|
|
validation_true_val = (label_val == predicted_val).float().sum().numpy() |
|
top_k_presence = 0 |
|
if label_val in predicted_top_k: |
|
top_k_presence = 1 |
|
|
|
levenshtein = jellyfish.levenshtein_distance(StropheParams.RHYME[predicted_val] if StropheParams.RHYME[predicted_val] != None else "", StropheParams.RHYME[label_val] if StropheParams.RHYME[label_val] != None else "") |
|
|
|
hit_pred = softmaxed[label_val].detach().numpy() |
|
|
|
return {"acc" : validation_true_val, |
|
"top_k" : top_k_presence, |
|
"lev_distance": levenshtein, |
|
"predicted_label" : hit_pred |
|
} |
|
|
|
|
|
|
|
class MeterValidator(ValidatorInterface): |
|
def __init__(self, pretrained_model, *args, **kwargs) -> None: |
|
super().__init__(*args, **kwargs) |
|
self.model = AutoModelForMaskedLM.from_pretrained(pretrained_model, output_hidden_states=True) |
|
|
|
self.config = self.model.config |
|
|
|
self.model_size = self.config.hidden_size |
|
|
|
self.meter_regressor = torch.nn.Linear(self.model_size, len(StropheParams.METER)) |
|
|
|
self.loss_fnc = torch.nn.CrossEntropyLoss(label_smoothing=0.0, weight=torch.tensor([1, 1.5, 5, 10, 10, 20, 5, 20, 20, 0])) |
|
|
|
def forward(self, input_ids=None, attention_mask=None, metre_ids=None, *args, **kwargs): |
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids.type(torch.LongTensor)) |
|
|
|
last_hidden = outputs['hidden_states'][-1] |
|
|
|
meter_regression = self.meter_regressor((last_hidden[:,0,:].view(-1, self.model_size))) |
|
|
|
softmaxed = torch.softmax(meter_regression, dim=1) |
|
meter_loss = self.loss_fnc(softmaxed, metre_ids) |
|
|
|
return ModelOutput(loss=meter_loss + outputs.loss, model_output=softmaxed) |
|
|
|
def predict_state(self, input_ids=None, *args, **kwargs): |
|
outputs = self.model(input_ids=input_ids) |
|
|
|
last_hidden = outputs['hidden_states'][-1] |
|
|
|
meter_regression = self.meter_regressor((last_hidden[:,0,:].view(-1, self.model_size))) |
|
|
|
softmaxed = torch.softmax(meter_regression, dim=1) |
|
|
|
return softmaxed |
|
|
|
def validate_model(self, input_ids=None, metre_ids=None, attention_mask=None, k: int=2,*args, **kwargs): |
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask ) |
|
|
|
last_hidden = outputs['hidden_states'][-1] |
|
|
|
meter_regression = self.meter_regressor((last_hidden[:,0,:].view(-1, self.model_size))) |
|
|
|
softmaxed = torch.softmax(meter_regression, dim=1) |
|
|
|
softmaxed = softmaxed.flatten().cpu() |
|
|
|
predicted_val = torch.argmax(softmaxed) |
|
|
|
predicted_top_k = torch.topk(softmaxed, k).indices |
|
|
|
label_val = torch.argmax(metre_ids.flatten()) |
|
|
|
validation_true_val = (label_val == predicted_val).float().sum().numpy() |
|
top_k_presence = 0 |
|
if label_val in predicted_top_k: |
|
top_k_presence = 1 |
|
|
|
hit_pred = softmaxed[label_val].detach().numpy() |
|
|
|
return {"acc" : validation_true_val, |
|
"top_k" : top_k_presence, |
|
"predicted_label" : hit_pred |
|
} |
|
|
|
class YearValidator(ValidatorInterface): |
|
def __init__(self, pretrained_model, *args, **kwargs) -> None: |
|
super().__init__(*args, **kwargs) |
|
self.model = AutoModelForMaskedLM.from_pretrained(pretrained_model, output_hidden_states=True) |
|
|
|
self.config = self.model.config |
|
|
|
self.model_size = self.config.hidden_size |
|
|
|
self.year_era = torch.nn.Linear(self.model_size, len(StropheParams.YEAR)) |
|
self.softmax = torch.nn.Softmax(dim=-1) |
|
|
|
self.year_val = torch.nn.Linear(self.model_size, 1) |
|
|
|
|
|
self.loss_fnc_era = torch.nn.CrossEntropyLoss(label_smoothing=0.0,weight=torch.tensor([10, 5, 3, 3, 1, 1, 1.5, 2, 5, 0])) |
|
|
|
self.loss_fnc_val = torch.nn.L1Loss() |
|
|
|
def forward(self, input_ids=None, attention_mask=None, year_bucket=None, year=None, *args, **kwargs): |
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids.type(torch.LongTensor)) |
|
|
|
last_hidden = outputs['hidden_states'][-1] |
|
|
|
|
|
year_val = self.year_val((last_hidden[:,0,:].view(-1, self.model_size))) |
|
year_val_loss = self.loss_fnc_val(year_val, year) |
|
|
|
year_era = self.year_era((last_hidden[:,0,:].view(-1, self.model_size))) |
|
year_era = self.softmax(year_era) |
|
year_era_loss = self.loss_fnc_era(year_era, year_bucket) |
|
|
|
return ModelOutput(loss=year_val_loss + year_era_loss + outputs.loss, model_output=(year_val, year_era)) |
|
|
|
def predict_state(self, input_ids=None, *args, **kwargs): |
|
outputs = self.model(input_ids=input_ids) |
|
|
|
last_hidden = outputs['hidden_states'][-1] |
|
|
|
year_val = self.year_val((last_hidden[:,0,:].view(-1, self.model_size))) |
|
|
|
return year_val |
|
|
|
def validate_model(self, input_ids=None, year_bucket=None, k: int=2,*args, **kwargs): |
|
|
|
outputs = self.model(input_ids=input_ids) |
|
|
|
last_hidden = outputs['hidden_states'][-1] |
|
|
|
year_val = self.year_val((last_hidden[:,0,:].view(-1, self.model_size))) |
|
if hasattr(self, 'year_era'): |
|
year_era = self.year_era((last_hidden[:,0,:].view(-1, self.model_size))) |
|
year_era = self.softmax(year_era) |
|
|
|
year_val = year_val.detach().flatten().cpu().numpy() |
|
if hasattr(self, 'year_era'): |
|
year_era = year_era.detach().flatten().cpu().numpy() |
|
|
|
publish_vector = [1/(1 + abs(year - year_val[0])) for year in StropheParams.YEAR[:-1]] + [0] |
|
publish_vector = np.asarray(publish_vector)/np.sum(publish_vector) |
|
|
|
if hasattr(self, 'year_era'): |
|
publish_vector+= year_era |
|
publish_vector = torch.tensor( np.asarray(publish_vector)/np.sum(publish_vector)) |
|
|
|
|
|
predicted_val = torch.argmax(publish_vector) |
|
|
|
predicted_top_k = torch.topk(publish_vector, k).indices |
|
|
|
label_val = torch.argmax(year_bucket.flatten()) |
|
|
|
validation_true_val = (label_val == predicted_val).float().sum().numpy() |
|
top_k_presence = 0 |
|
if label_val in predicted_top_k: |
|
top_k_presence = 1 |
|
|
|
hit_pred = publish_vector[label_val].detach().numpy() |
|
|
|
distance = abs(label_val.numpy() - predicted_val.numpy()) |
|
|
|
return {"acc" : validation_true_val, |
|
"top_k" : top_k_presence, |
|
"predicted_label" : hit_pred, |
|
"distance" : distance |
|
} |
|
|
|
|
|
|
|
class ValidatorTrainer: |
|
def __init__(self, model: ValidatorInterface, args: dict, train_dataset: Dataset, data_collator, device): |
|
self.model = model |
|
self.args = args |
|
self.epochs = 1 if "epochs" not in args.keys() else args["epochs"] |
|
self.batch_size = 1 if "batch_size" not in args.keys() else args["batch_size"] |
|
self.lr = 5e-5 if "lr" not in args.keys() else args["lr"] |
|
self.weight_decay = 0.0 if "weight_decay" not in args.keys() else args['weight_decay'] |
|
|
|
self.train_loader = DataLoader(train_dataset, self.batch_size, True, collate_fn=data_collator) |
|
|
|
|
|
self.device = device |
|
self.optimizer = SAM(self.model.parameters(), torch.optim.AdamW, lr=self.lr, weight_decay=self.weight_decay) |
|
self.scheduler = transformers.get_constant_schedule_with_warmup(self.optimizer, 4 * len(train_dataset)//self.batch_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(self): |
|
for epoch in tqdm(range(self.epochs)): |
|
self.model.train() |
|
|
|
|
|
|
|
for step, batch in enumerate(self.train_loader): |
|
|
|
loss = self.model(input_ids=batch["input_ids"].to(self.device), attention_mask=batch["attention_mask"].to(self.device), |
|
rhyme = None if batch["rhyme"] == None else batch["rhyme"].to(self.device), |
|
metre_ids = None if batch["metre_ids"] == None else batch["metre_ids"].to(self.device), |
|
year_bucket = None if batch["year_bucket"] == None else batch["year_bucket"].to(self.device), |
|
year = None if batch["year"] == None else batch["year"].to(self.device))['loss'] |
|
loss.backward() |
|
self.optimizer.first_step(zero_grad=True) |
|
|
|
loss = self.model(input_ids=batch["input_ids"].to(self.device), attention_mask=batch["attention_mask"].to(self.device), |
|
rhyme = None if batch["rhyme"] == None else batch["rhyme"].to(self.device), |
|
metre_ids = None if batch["metre_ids"] == None else batch["metre_ids"].to(self.device), |
|
year_bucket = None if batch["year_bucket"] == None else batch["year_bucket"].to(self.device), |
|
year = None if batch["year"] == None else batch["year"].to(self.device))['loss'] |
|
|
|
loss.backward() |
|
self.optimizer.second_step(zero_grad=True) |
|
self.scheduler.step() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if step % 100 == 0: |
|
print(f'Step {len(self.train_loader) * epoch + step}, loss : {loss.item()}', flush=True) |
|
|