Delete corpus_capsulated_datasets.py
Browse files- corpus_capsulated_datasets.py +0 -754
corpus_capsulated_datasets.py
DELETED
@@ -1,754 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
|
6 |
-
from utils.poet_utils import StropheParams, SyllableMaker, TextAnalysis, TextManipulation
|
7 |
-
from torch.utils.data import Dataset
|
8 |
-
from transformers import PreTrainedTokenizerBase, PreTrainedModel
|
9 |
-
#TODO: Maybe replace year of book being written for year Author was born
|
10 |
-
class CorpusDatasetPytorch:
|
11 |
-
"""Dataset class responsible for data loading.
|
12 |
-
"""
|
13 |
-
|
14 |
-
class RawDataset:
|
15 |
-
"""Dataset distributing raw sting data with no preprocessing
|
16 |
-
"""
|
17 |
-
def __init__(self, data_file_paths, lower_case:bool = True):
|
18 |
-
"""Construct the frame around Raw data generation
|
19 |
-
|
20 |
-
Args:
|
21 |
-
data_file_paths (_type_): list of paths to data files
|
22 |
-
lower_case (bool, optional): if resulting data should be in lowercase. Defaults to True.
|
23 |
-
"""
|
24 |
-
self._data_file_paths = data_file_paths
|
25 |
-
self.lower_case = lower_case
|
26 |
-
|
27 |
-
def gen_files(self):
|
28 |
-
"""Get individual opened files
|
29 |
-
|
30 |
-
Yields:
|
31 |
-
_type_: open file object
|
32 |
-
"""
|
33 |
-
for filename in self._data_file_paths:
|
34 |
-
yield open(filename, 'r')
|
35 |
-
|
36 |
-
def get_text(self):
|
37 |
-
"""Get lines of text of poetry
|
38 |
-
|
39 |
-
Yields:
|
40 |
-
str: individual verse line
|
41 |
-
"""
|
42 |
-
for step,file in enumerate(self.gen_files()):
|
43 |
-
if step % 500 == 0:
|
44 |
-
print(f"Processing file {step}")
|
45 |
-
datum = json.load(file)
|
46 |
-
for data_line in datum:
|
47 |
-
for part_line in data_line['body']:
|
48 |
-
for text_line in part_line:
|
49 |
-
yield text_line['text'].lower() if self.lower_case else text_line['text']
|
50 |
-
|
51 |
-
def get_part(self):
|
52 |
-
"""Get strophe of poetry
|
53 |
-
|
54 |
-
Yields:
|
55 |
-
str: 1 strophe of poetry
|
56 |
-
"""
|
57 |
-
for step,file in enumerate(self.gen_files()):
|
58 |
-
if step % 500 == 0:
|
59 |
-
print(f"Processing file {step}")
|
60 |
-
datum = json.load(file)
|
61 |
-
for data_line in datum:
|
62 |
-
for part_line in data_line['body']:
|
63 |
-
part = []
|
64 |
-
for text_line in part_line:
|
65 |
-
part.append(text_line['text'])
|
66 |
-
yield "\n".join(part).lower() if self.lower_case else "\n".join(part)
|
67 |
-
|
68 |
-
def get_body(self):
|
69 |
-
"""Get whole poem
|
70 |
-
|
71 |
-
Yields:
|
72 |
-
str: 1 whole poem
|
73 |
-
"""
|
74 |
-
for step,file in enumerate(self.gen_files()):
|
75 |
-
if step % 500 == 0:
|
76 |
-
print(f"Processing file {step}")
|
77 |
-
datum = json.load(file)
|
78 |
-
for data_line in datum:
|
79 |
-
body = []
|
80 |
-
for part_line in data_line['body']:
|
81 |
-
|
82 |
-
for text_line in part_line:
|
83 |
-
body.append(text_line['text'])
|
84 |
-
body.append("\n")
|
85 |
-
yield "\n".join(body).lower() if self.lower_case else "\n".join(body)
|
86 |
-
|
87 |
-
class TextDataset(Dataset):
|
88 |
-
"""Dataset of preprocessed verse lines
|
89 |
-
|
90 |
-
Args:
|
91 |
-
Dataset (_type_): Dataset is child of torch class for better integration with torch and huggingface
|
92 |
-
"""
|
93 |
-
|
94 |
-
def __init__(self, data_file_paths, prompt_length=True, prompt_ending=True, lower_case=True, val_data_rate: float = 0.05, test_data_rate: float = 0.05):
|
95 |
-
"""Construct the class our given data files path and store variables
|
96 |
-
|
97 |
-
Args:
|
98 |
-
data_file_paths (_type_): list of paths to data files
|
99 |
-
prompt_length (bool, optional): If to prompt the syllable count. Defaults to True.
|
100 |
-
prompt_ending (bool, optional): If to prompt verse ending. Defaults to True.
|
101 |
-
lower_case (bool, optional): If the string should be in lowercase. Defaults to True.
|
102 |
-
val_data_rate (float, optional): Amount of data to be left for validation. Defaults to 0.05.
|
103 |
-
test_data_rate (float, optional): Amount of data to be left for validation. Defaults to 0.05.
|
104 |
-
"""
|
105 |
-
self._data_file_paths = data_file_paths
|
106 |
-
self.prompt_length = prompt_length
|
107 |
-
self.prompt_ending = prompt_ending
|
108 |
-
self.lower_case = lower_case
|
109 |
-
|
110 |
-
self.val_data_rate = val_data_rate
|
111 |
-
self.test_data_rate = test_data_rate
|
112 |
-
|
113 |
-
self.data = []
|
114 |
-
self.validation_data = []
|
115 |
-
self.test_data = []
|
116 |
-
|
117 |
-
|
118 |
-
def gen_files(self):
|
119 |
-
"""Get individual opened files
|
120 |
-
|
121 |
-
Yields:
|
122 |
-
_type_: open file object
|
123 |
-
"""
|
124 |
-
for filename in self._data_file_paths:
|
125 |
-
yield open(filename, 'r')
|
126 |
-
|
127 |
-
@staticmethod
|
128 |
-
def _vowels_and_endings(raw_text):
|
129 |
-
"""Get the verse ending and number of syllables in verse
|
130 |
-
|
131 |
-
Args:
|
132 |
-
raw_text (str): raw verse to analyze
|
133 |
-
|
134 |
-
Returns:
|
135 |
-
tuple: number of syllables, ending syllable
|
136 |
-
"""
|
137 |
-
syllabs = SyllableMaker.syllabify(raw_text)
|
138 |
-
vowels = len(syllabs) #INFO: Now counts the number of syllables
|
139 |
-
ending = syllabs[-1]
|
140 |
-
return vowels, ending
|
141 |
-
|
142 |
-
@staticmethod
|
143 |
-
def _ending_vector(end):
|
144 |
-
"""Construct One-hot encoded vector for ending syllable
|
145 |
-
|
146 |
-
Args:
|
147 |
-
end (str): Ending syllable
|
148 |
-
|
149 |
-
Returns:
|
150 |
-
numpy.ndarray: One-hot encoded vector of ending syllable
|
151 |
-
"""
|
152 |
-
verse_end_vector = np.zeros(len(StropheParams.ENDS))
|
153 |
-
if end in StropheParams.ENDS[:-1]:
|
154 |
-
verse_end_vector[StropheParams.ENDS.index(end)] = 1
|
155 |
-
else:
|
156 |
-
verse_end_vector[-1] = 1
|
157 |
-
return verse_end_vector
|
158 |
-
|
159 |
-
@staticmethod
|
160 |
-
def _syllable_line(raw_text):
|
161 |
-
"""Construct verse as sequence of syllables
|
162 |
-
|
163 |
-
Args:
|
164 |
-
raw_text (str): raw verse line
|
165 |
-
|
166 |
-
Returns:
|
167 |
-
str: Verse line as sequence of syllables
|
168 |
-
"""
|
169 |
-
ending = raw_text[-1] if raw_text[-1] in [',','.','!','?'] else ''
|
170 |
-
return " ".join(SyllableMaker.syllabify(raw_text)) + ending
|
171 |
-
|
172 |
-
def _construct_line(self, raw_text, metre):
|
173 |
-
"""Construct individual content line
|
174 |
-
|
175 |
-
Args:
|
176 |
-
raw_text (str): raw verse line
|
177 |
-
|
178 |
-
Returns:
|
179 |
-
str: Processed verse line with line parameters
|
180 |
-
"""
|
181 |
-
syllables = SyllableMaker.syllabify(raw_text)
|
182 |
-
num_str = f"{len(syllables)} # " if self.prompt_length else ""
|
183 |
-
verse_end = f"{syllables[-1]} # " if self.prompt_ending else ""
|
184 |
-
metre_txt = f"{metre} # "
|
185 |
-
return metre_txt + num_str + verse_end + raw_text
|
186 |
-
|
187 |
-
def _introduce_phonetics(self, raw_text:str, phonetics):
|
188 |
-
phonetic_text = raw_text
|
189 |
-
for word in phonetics['words']:
|
190 |
-
phonetic_text = phonetic_text.replace(f'{word["token_lc"]}', f'{word["phoebe"]}') if self.lower_case else phonetic_text.replace(f'{word["token"]}', f'{word["phoebe"]}')
|
191 |
-
return phonetic_text
|
192 |
-
|
193 |
-
def _construct_syllable_line(self, raw_text, metre):
|
194 |
-
"""Construct individual content line as sequence of syllables
|
195 |
-
|
196 |
-
Args:
|
197 |
-
raw_text (str): raw verse line
|
198 |
-
|
199 |
-
Returns:
|
200 |
-
str: Processed verse line as sequence of syllables with line parameters
|
201 |
-
"""
|
202 |
-
ending = raw_text[-1] if raw_text[-1] in [',','.','!','?'] else ''
|
203 |
-
syllables = SyllableMaker.syllabify(raw_text)
|
204 |
-
num_str = f"{len(syllables)} # " if self.prompt_length else ""
|
205 |
-
verse_end = f"{syllables[-1]} # " if self.prompt_ending else ""
|
206 |
-
metre_txt = f"{metre} # "
|
207 |
-
return metre_txt+ num_str + verse_end + " ".join(syllables) + ending
|
208 |
-
|
209 |
-
|
210 |
-
def data_text_line_gen(self):
|
211 |
-
"""Preprocess and process data for usage
|
212 |
-
"""
|
213 |
-
for step,file in enumerate(self.gen_files()):
|
214 |
-
if step % 500 == 0:
|
215 |
-
print(f"Processing file {step}")
|
216 |
-
datum = json.load(file)
|
217 |
-
for data_line in datum:
|
218 |
-
for part_line in data_line['body']:
|
219 |
-
for text_line in part_line:
|
220 |
-
metre = StropheParams.METER_TRANSLATE.get(text_line["metre"][0]["type"], "N")
|
221 |
-
|
222 |
-
scanned_text = TextManipulation._remove_most_nonchar(text_line['text'], self.lower_case)
|
223 |
-
|
224 |
-
text_line_scanned = self._construct_line(scanned_text, metre)
|
225 |
-
syllable_line = self._construct_syllable_line(scanned_text, metre)
|
226 |
-
#phonetic_text = self._introduce_phonetics(scanned_text, text_line)
|
227 |
-
|
228 |
-
num_vowels, verse_end = self._vowels_and_endings(scanned_text)
|
229 |
-
|
230 |
-
# Based on result of random chose proper set. Because data are large enough, will result in wanted split.
|
231 |
-
rand_split = np.random.rand()
|
232 |
-
if rand_split > self.val_data_rate + self.test_data_rate:
|
233 |
-
self.data.append({
|
234 |
-
"input_ids" : [text_line_scanned,syllable_line],
|
235 |
-
"nums": [num_vowels],
|
236 |
-
"verse_end": verse_end,
|
237 |
-
"metre": metre
|
238 |
-
})
|
239 |
-
elif rand_split < self.test_data_rate:
|
240 |
-
self.test_data.append({
|
241 |
-
"input_ids" : [text_line_scanned,syllable_line],
|
242 |
-
"nums": [num_vowels],
|
243 |
-
"verse_end": verse_end,
|
244 |
-
"metre": metre
|
245 |
-
})
|
246 |
-
else:
|
247 |
-
self.validation_data.append({
|
248 |
-
"input_ids" : [text_line_scanned,syllable_line],
|
249 |
-
"nums": [num_vowels],
|
250 |
-
"verse_end": verse_end,
|
251 |
-
"metre": metre
|
252 |
-
})
|
253 |
-
|
254 |
-
|
255 |
-
def __len__(self):
|
256 |
-
"""Return length of training data
|
257 |
-
|
258 |
-
Returns:
|
259 |
-
int: length of training data
|
260 |
-
"""
|
261 |
-
return len(self.data)
|
262 |
-
|
263 |
-
def __getitem__(self, index):
|
264 |
-
"""return indexed item
|
265 |
-
|
266 |
-
Args:
|
267 |
-
index (int): index from where to return
|
268 |
-
|
269 |
-
Returns:
|
270 |
-
dict: dict with indexed data
|
271 |
-
"""
|
272 |
-
return self.data[index]
|
273 |
-
|
274 |
-
class BodyDataset(Dataset):
|
275 |
-
"""Dataset of preprocessed strophe
|
276 |
-
|
277 |
-
Args:
|
278 |
-
Dataset (_type_): Dataset is child of torch class for better integration with torch and huggingface
|
279 |
-
"""
|
280 |
-
def __init__(self, data_file_paths,
|
281 |
-
prompt_length=True, prompt_ending=True, prompt_verse=True, verse_len=[4,6], lower_case=True, val_data_rate: float = 0.05, test_data_rate: float = 0.05):
|
282 |
-
"""Construct the class our given data files path and store variables
|
283 |
-
|
284 |
-
Args:
|
285 |
-
data_file_paths (_type_): list of paths to data files
|
286 |
-
prompt_length (bool, optional): If to prompt the syllable count. Defaults to True.
|
287 |
-
prompt_ending (bool, optional): If to prompt verse ending. Defaults to True.
|
288 |
-
prompt_verse (bool, optional): If to prompt rhyme schema . Defaults to True.
|
289 |
-
verse_len (list, optional): Considered length of strophe. Defaults to [4,6].
|
290 |
-
lower_case (bool, optional): If the string should be in lowercase. Defaults to True.
|
291 |
-
val_data_rate (float, optional): Amount of data to be left for validation. Defaults to 0.05.
|
292 |
-
test_data_rate (float, optional): Amount of data to be left for validation. Defaults to 0.05.
|
293 |
-
"""
|
294 |
-
self._data_file_paths = data_file_paths
|
295 |
-
self.prompt_length = prompt_length
|
296 |
-
self.prompt_ending = prompt_ending
|
297 |
-
self.prompt_verse = prompt_verse
|
298 |
-
self.verse_len = verse_len
|
299 |
-
self.lower_case = lower_case
|
300 |
-
|
301 |
-
self.val_data_rate = val_data_rate
|
302 |
-
self.test_data_rate = test_data_rate
|
303 |
-
|
304 |
-
self.data = []
|
305 |
-
self.validation_data = []
|
306 |
-
self.test_data = []
|
307 |
-
|
308 |
-
def gen_files(self):
|
309 |
-
"""Get individual opened files
|
310 |
-
|
311 |
-
Yields:
|
312 |
-
_type_: open file object
|
313 |
-
"""
|
314 |
-
for filename in self._data_file_paths:
|
315 |
-
yield open(filename, 'r')
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
def _construct_line(self, raw_text, metre):
|
321 |
-
"""Construct individual content line
|
322 |
-
|
323 |
-
Args:
|
324 |
-
raw_text (str): raw verse line
|
325 |
-
|
326 |
-
Returns:
|
327 |
-
str: Processed verse line with line parameters
|
328 |
-
"""
|
329 |
-
syllables = SyllableMaker.syllabify(raw_text)
|
330 |
-
num_str = f"{len(syllables)} # " if self.prompt_length else ""
|
331 |
-
verse_end = f"{syllables[-1]} # " if self.prompt_ending else ""
|
332 |
-
metre_txt = f"{metre} # "
|
333 |
-
return metre_txt + num_str + verse_end + raw_text
|
334 |
-
|
335 |
-
def _construct_syllable_line(self, raw_text, metre):
|
336 |
-
"""Construct individual content line as sequence of syllables
|
337 |
-
|
338 |
-
Args:
|
339 |
-
raw_text (str): raw verse line
|
340 |
-
|
341 |
-
Returns:
|
342 |
-
str: Processed verse line as sequence of syllables with line parameters
|
343 |
-
"""
|
344 |
-
ending = raw_text[-1] if raw_text[-1] in [',','.','!','?'] else ''
|
345 |
-
syllables = SyllableMaker.syllabify(raw_text)
|
346 |
-
num_str = f"{len(syllables)} # " if self.prompt_length else ""
|
347 |
-
verse_end = f"{syllables[-1]} # " if self.prompt_ending else ""
|
348 |
-
metre_txt = f"{metre} # "
|
349 |
-
return metre_txt + num_str + verse_end + " ".join(syllables) + ending
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
def data_body_gen(self):
|
354 |
-
"""Preprocess and process data for usage
|
355 |
-
"""
|
356 |
-
for step,file in enumerate(self.gen_files()):
|
357 |
-
if step % 500 == 0:
|
358 |
-
print(f"Processing file {step}")
|
359 |
-
datum = json.load(file)
|
360 |
-
|
361 |
-
for data_line in datum:
|
362 |
-
publish_year_text = TextManipulation._year_bucketor(data_line["biblio"]["year"])
|
363 |
-
publish_year_true = data_line["biblio"]["year"] if TextAnalysis._is_year(data_line["biblio"]["year"]) else 'NaN'
|
364 |
-
context = ["NO CONTEXT"]
|
365 |
-
|
366 |
-
for part_line in data_line['body']:
|
367 |
-
body = []
|
368 |
-
body_syllabs = []
|
369 |
-
rhyme= []
|
370 |
-
metres = []
|
371 |
-
i = 0
|
372 |
-
for text_line in part_line:
|
373 |
-
|
374 |
-
# In rare cases multiple, but from searching only 1 metre per line
|
375 |
-
metre = StropheParams.METER_TRANSLATE.get(text_line["metre"][0]["type"], "J")
|
376 |
-
metres += [metre]
|
377 |
-
|
378 |
-
rhyme.append(text_line["rhyme"])
|
379 |
-
|
380 |
-
scanned_text = TextManipulation._remove_most_nonchar(text_line["text"], self.lower_case)
|
381 |
-
|
382 |
-
body.append(self._construct_line(scanned_text,metre))
|
383 |
-
body_syllabs.append(self._construct_syllable_line(scanned_text,metre))
|
384 |
-
|
385 |
-
i+=1
|
386 |
-
|
387 |
-
if i in self.verse_len:
|
388 |
-
|
389 |
-
rhyme_str = TextManipulation._rhyme_string(rhyme)
|
390 |
-
|
391 |
-
text = f"# {rhyme_str} # {publish_year_text}\n" + "\n".join(body) + "\n"
|
392 |
-
syllable_text = f"# {rhyme_str} # {publish_year_text}\n" + "\n".join(body_syllabs) + "\n"
|
393 |
-
context_text= "\n".join(context)
|
394 |
-
rand_split = np.random.rand()
|
395 |
-
if rand_split > self.val_data_rate + self.test_data_rate:
|
396 |
-
self.data.append({
|
397 |
-
"input_ids" : [text,syllable_text],
|
398 |
-
"context_ids" : context_text,
|
399 |
-
"year": publish_year_true,
|
400 |
-
"rhyme": rhyme_str,
|
401 |
-
"metre_ids" : metres.copy()
|
402 |
-
})
|
403 |
-
elif rand_split < self.test_data_rate:
|
404 |
-
self.test_data.append({
|
405 |
-
"input_ids" : [text,syllable_text],
|
406 |
-
"context_ids" : context_text,
|
407 |
-
"year": publish_year_true,
|
408 |
-
"rhyme": rhyme_str,
|
409 |
-
"metre_ids" : metres.copy()
|
410 |
-
})
|
411 |
-
else:
|
412 |
-
self.validation_data.append({
|
413 |
-
"input_ids" : [text,syllable_text],
|
414 |
-
"context_ids" : context_text,
|
415 |
-
"year": publish_year_true,
|
416 |
-
"rhyme": rhyme_str,
|
417 |
-
"metre_ids" : metres.copy()
|
418 |
-
})
|
419 |
-
|
420 |
-
if i == max(self.verse_len):
|
421 |
-
body = []
|
422 |
-
body_syllabs = []
|
423 |
-
rhyme = []
|
424 |
-
metres = []
|
425 |
-
i=0
|
426 |
-
|
427 |
-
|
428 |
-
def __len__(self):
|
429 |
-
"""Return length of training data
|
430 |
-
|
431 |
-
Returns:
|
432 |
-
int: length of training data
|
433 |
-
"""
|
434 |
-
return len(self.data)
|
435 |
-
|
436 |
-
def __getitem__(self, index):
|
437 |
-
"""return indexed item
|
438 |
-
|
439 |
-
Args:
|
440 |
-
index (int): index from where to return
|
441 |
-
|
442 |
-
Returns:
|
443 |
-
dict: dict with indexed data
|
444 |
-
"""
|
445 |
-
return self.data[index]
|
446 |
-
|
447 |
-
def get_filenames(self):
|
448 |
-
"""Get paths of data files
|
449 |
-
|
450 |
-
Returns:
|
451 |
-
list: Paths of data files
|
452 |
-
"""
|
453 |
-
data_filenames = os.listdir(self.data_dir)
|
454 |
-
data_by_files = []
|
455 |
-
for filename in data_filenames:
|
456 |
-
file_path = os.path.join(self.data_dir, filename)
|
457 |
-
data_by_files.append(file_path)
|
458 |
-
return data_by_files
|
459 |
-
|
460 |
-
def load_raw_(self):
|
461 |
-
"""Load Raw dataset with raw string data
|
462 |
-
"""
|
463 |
-
filenames = self.get_filenames()
|
464 |
-
|
465 |
-
self.raw_dataset = CorpusDatasetPytorch.RawDataset(filenames, self.lower_case)
|
466 |
-
|
467 |
-
def load_json_filenames(self, prompt_length, prompt_ending, prompt_verse, verse_len=[4,6], val_data_rate=0.05, test_data_rate=0.05):
|
468 |
-
"""Load Verse and Strophe datasets
|
469 |
-
|
470 |
-
Args:
|
471 |
-
prompt_length (bool, optional): If to prompt the syllable count. Defaults to True.
|
472 |
-
prompt_ending (bool, optional): If to prompt verse ending. Defaults to True.
|
473 |
-
prompt_verse (bool, optional): If to prompt rhyme schema . Defaults to True.
|
474 |
-
verse_len (list, optional): Considered length of strophe. Defaults to [4,6].
|
475 |
-
val_data_rate (float, optional): If the string should be in lowercase. Defaults to 0.1.
|
476 |
-
"""
|
477 |
-
filenames = self.get_filenames()
|
478 |
-
|
479 |
-
self.pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset(filenames, prompt_ending=prompt_ending,
|
480 |
-
prompt_length=prompt_length, prompt_verse=prompt_verse,
|
481 |
-
verse_len=verse_len, lower_case=self.lower_case,
|
482 |
-
val_data_rate=val_data_rate, test_data_rate=test_data_rate)
|
483 |
-
self.pytorch_dataset_body.data_body_gen()
|
484 |
-
|
485 |
-
|
486 |
-
self.pytorch_dataset_text = CorpusDatasetPytorch.TextDataset(filenames, prompt_ending=prompt_ending,
|
487 |
-
prompt_length=prompt_length, lower_case=self.lower_case,
|
488 |
-
val_data_rate=val_data_rate, test_data_rate=test_data_rate)
|
489 |
-
|
490 |
-
self.pytorch_dataset_text.data_text_line_gen()
|
491 |
-
|
492 |
-
self.val_pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset([])
|
493 |
-
self.val_pytorch_dataset_text = CorpusDatasetPytorch.TextDataset([])
|
494 |
-
|
495 |
-
self.val_pytorch_dataset_body.data = self.pytorch_dataset_body.validation_data
|
496 |
-
self.val_pytorch_dataset_text.data = self.pytorch_dataset_text.validation_data
|
497 |
-
|
498 |
-
self.pytorch_dataset_text.validation_data = []
|
499 |
-
self.pytorch_dataset_body.validation_data = []
|
500 |
-
|
501 |
-
self.test_pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset([])
|
502 |
-
self.test_pytorch_dataset_text = CorpusDatasetPytorch.TextDataset([])
|
503 |
-
|
504 |
-
self.test_pytorch_dataset_body.data = self.pytorch_dataset_body.test_data
|
505 |
-
self.test_pytorch_dataset_text.data = self.pytorch_dataset_text.test_data
|
506 |
-
|
507 |
-
self.pytorch_dataset_text.test_data = []
|
508 |
-
self.pytorch_dataset_body.test_data = []
|
509 |
-
|
510 |
-
def create_empty(self):
|
511 |
-
"""Create empty holder for possible load of processed data from file
|
512 |
-
"""
|
513 |
-
self.pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset([])
|
514 |
-
self.pytorch_dataset_text = CorpusDatasetPytorch.TextDataset([])
|
515 |
-
self.val_pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset([])
|
516 |
-
self.val_pytorch_dataset_text = CorpusDatasetPytorch.TextDataset([])
|
517 |
-
self.test_pytorch_dataset_body = CorpusDatasetPytorch.BodyDataset([])
|
518 |
-
self.test_pytorch_dataset_text = CorpusDatasetPytorch.TextDataset([])
|
519 |
-
|
520 |
-
|
521 |
-
@staticmethod
|
522 |
-
def collate(batch, tokenizer: PreTrainedTokenizerBase ,max_len = 1024, max_context = 1024 ,mask_rate = 0.0, syllables: bool = False, format: str = 'METER_VERSE'):
|
523 |
-
"""Process data for usage in LM
|
524 |
-
|
525 |
-
Args:
|
526 |
-
batch (_type_): Batch with selected data points
|
527 |
-
tokenizer (PreTrainedTokenizerBase): tokenizer to tokenize input text
|
528 |
-
max_len (int, optional): Maximum length of tokenization. Defaults to 1024.
|
529 |
-
max_context (int, optional): Maximum length of tokenization of context. Defaults to 1024.
|
530 |
-
mask_rate (float, optional): Rate in with to mask data. Defaults to 0.0.
|
531 |
-
syllables (bool, optional): If to use sequence of syllables as input text. Defaults to False.
|
532 |
-
|
533 |
-
Returns:
|
534 |
-
dict: tokenized and processed to tensors data
|
535 |
-
"""
|
536 |
-
index = 1 if syllables else 0
|
537 |
-
|
538 |
-
tokenizer.model_max_length = max_len
|
539 |
-
if batch[0]['input_ids'][0].startswith("#"):
|
540 |
-
|
541 |
-
data = [text['input_ids'][index] for text in batch]
|
542 |
-
if format == "BASIC":
|
543 |
-
data = ["\n".join
|
544 |
-
(
|
545 |
-
[line + f" # {datum.splitlines()[1].split()[0]}"
|
546 |
-
if i==0 else line.split('#')[-1] for i, line in enumerate(datum.splitlines())]
|
547 |
-
) + tokenizer.eos_token for j, datum in enumerate(data)
|
548 |
-
]
|
549 |
-
elif format == "VERSE_PAR":
|
550 |
-
data = ["\n".join
|
551 |
-
(
|
552 |
-
[line + f" # {datum.splitlines()[1].split()[0]}"
|
553 |
-
if i==0 else "#".join(line.split('#')[1:]) for i, line in enumerate(datum.splitlines())]
|
554 |
-
) + tokenizer.eos_token for j, datum in enumerate(data)
|
555 |
-
]
|
556 |
-
else:
|
557 |
-
data = [text['input_ids'][index] + tokenizer.eos_token for text in batch]
|
558 |
-
|
559 |
-
tokenized = tokenizer(data,return_tensors='pt', truncation=True, padding=True)
|
560 |
-
input_ids = tokenized['input_ids']
|
561 |
-
attention = tokenized["attention_mask"]
|
562 |
-
|
563 |
-
else:
|
564 |
-
tokenized = tokenizer([text['input_ids'][index] + tokenizer.eos_token for text in batch],return_tensors='pt', truncation=True, padding=True)
|
565 |
-
input_ids = tokenized['input_ids']
|
566 |
-
attention = tokenized["attention_mask"]
|
567 |
-
|
568 |
-
|
569 |
-
nums = None
|
570 |
-
if "nums" in batch[0].keys():
|
571 |
-
nums = torch.tensor(np.asarray([text['nums'] for text in batch], dtype=np.int32), dtype=torch.float32)
|
572 |
-
|
573 |
-
rhyme=None
|
574 |
-
if "rhyme" in batch[0].keys():
|
575 |
-
rhyme = torch.tensor(np.asarray([TextAnalysis._rhyme_vector(text["rhyme"]) for text in batch], dtype=np.int32), dtype=torch.float32)
|
576 |
-
|
577 |
-
verse_end = None
|
578 |
-
if "verse_end" in batch[0].keys():
|
579 |
-
verse_end = torch.tensor(np.asarray([CorpusDatasetPytorch.TextDataset._ending_vector(text["verse_end"]) for text in batch], dtype=np.int32), dtype=torch.float32)
|
580 |
-
|
581 |
-
year = None
|
582 |
-
if "year" in batch[0].keys():
|
583 |
-
year = torch.tensor(np.asarray([TextAnalysis._publish_year_vector(text["year"]) for text in batch], dtype=np.int32), dtype=torch.float32)
|
584 |
-
|
585 |
-
metre = None
|
586 |
-
if "metre" in batch[0].keys():
|
587 |
-
metre = torch.tensor(np.asarray([TextAnalysis._metre_vector(text["metre"]) for text in batch], dtype=np.int32), dtype=torch.float32)
|
588 |
-
|
589 |
-
context_ids = None
|
590 |
-
context_attention_mask = None
|
591 |
-
if "context_ids" in batch[0].keys():
|
592 |
-
tokenizer.model_max_length = max_context
|
593 |
-
tokenized_context = tokenizer([text['context_ids'] + tokenizer.eos_token for text in batch],return_tensors='pt', truncation=True, padding=True)
|
594 |
-
context_ids = tokenized_context['input_ids']
|
595 |
-
context_attention_mask = tokenized_context['attention_mask']
|
596 |
-
|
597 |
-
return {
|
598 |
-
"input_ids": input_ids,
|
599 |
-
"labels": input_ids.type(torch.LongTensor),
|
600 |
-
"attention_mask": attention,
|
601 |
-
"context_ids" : context_ids,
|
602 |
-
"context_attention_mask" : context_attention_mask,
|
603 |
-
"nums" : nums,
|
604 |
-
"rhyme": rhyme,
|
605 |
-
"verse_end" : verse_end,
|
606 |
-
"year": year,
|
607 |
-
"metre" : metre}
|
608 |
-
|
609 |
-
|
610 |
-
@staticmethod
|
611 |
-
def collate_distil(batch, tokenizer: PreTrainedTokenizerBase ,surrogate_model: PreTrainedModel = None,surrogate_model_device=None ,max_len = 1024):
|
612 |
-
tokenizer.model_max_length = max_len
|
613 |
-
tokenized = tokenizer([text['input_ids'][0] + tokenizer.eos_token for text in batch], return_tensors='pt', truncation=True, padding=True)
|
614 |
-
input_ids = tokenized['input_ids']
|
615 |
-
attention = tokenized["attention_mask"]
|
616 |
-
|
617 |
-
with torch.no_grad():
|
618 |
-
# This is Tuple
|
619 |
-
model_hidden_states = surrogate_model(input_ids=input_ids.to(surrogate_model_device),
|
620 |
-
attention_mask=attention.to(surrogate_model_device),
|
621 |
-
labels=input_ids.type(torch.LongTensor).to(surrogate_model_device))['hidden_states']
|
622 |
-
model_hidden_states = [hidden.cpu().detach() for hidden in model_hidden_states]
|
623 |
-
|
624 |
-
return {
|
625 |
-
"input_ids": input_ids,
|
626 |
-
"labels": input_ids.type(torch.LongTensor),
|
627 |
-
"attention_mask": attention,
|
628 |
-
"to_replicate_states": model_hidden_states
|
629 |
-
}
|
630 |
-
|
631 |
-
@staticmethod
|
632 |
-
def collate_validator(batch, tokenizer: PreTrainedTokenizerBase,syllables:bool, is_syllable:bool = False,max_len = 512):
|
633 |
-
"""Process data for use in LM for metre,rhyme and year prediction
|
634 |
-
|
635 |
-
Args:
|
636 |
-
batch (_type_): Batch with selected data points
|
637 |
-
tokenizer (PreTrainedTokenizerBase): tokenizer to tokenize input text
|
638 |
-
syllables (bool): If to use sequence of syllables as input text
|
639 |
-
is_syllable (bool, optional): Signal if the preprocessed inputs contain syllable data. Defaults to False.
|
640 |
-
max_len (int, optional): Maximum length of tokenization. Defaults to 1024.
|
641 |
-
|
642 |
-
Returns:
|
643 |
-
dict: tokenized and processed to tensors data
|
644 |
-
"""
|
645 |
-
index = 1 if syllables and is_syllable else 0
|
646 |
-
tokenizer.model_max_length = max_len
|
647 |
-
data_ids = ["\n".join(
|
648 |
-
[" ".join(
|
649 |
-
SyllableMaker.syllabify(line.split('#')[-1])
|
650 |
-
) + (line[-1] if line[-1] in [',','.','!','?'] else '') if (syllables and not is_syllable and line) else line.split('#')[-1] for line in text['input_ids'][index].splitlines()[1:]]
|
651 |
-
) for text in batch ]
|
652 |
-
|
653 |
-
|
654 |
-
tokenized = tokenizer(data_ids, return_tensors='pt', truncation=True, padding=True)
|
655 |
-
input_ids = tokenized['input_ids']
|
656 |
-
attention = tokenized["attention_mask"]
|
657 |
-
|
658 |
-
rhyme=None
|
659 |
-
if "rhyme" in batch[0].keys():
|
660 |
-
rhyme = torch.tensor(np.asarray([TextAnalysis._rhyme_vector(text["rhyme"]) for text in batch], dtype=np.int32), dtype=torch.float32)
|
661 |
-
|
662 |
-
year_bucket = None
|
663 |
-
year = None
|
664 |
-
if "year" in batch[0].keys():
|
665 |
-
year_bucket = torch.tensor(np.asarray([TextAnalysis._publish_year_vector(text["year"]) for text in batch], dtype=np.int32), dtype=torch.float32)
|
666 |
-
year = torch.tensor(np.asarray([ [int(text['year'])] if text['year'] != 'NaN' else [0] for text in batch], dtype=np.int32), dtype=torch.float32)
|
667 |
-
|
668 |
-
return {
|
669 |
-
"input_ids": input_ids,
|
670 |
-
"attention_mask": attention,
|
671 |
-
"rhyme": rhyme,
|
672 |
-
"metre_ids": None,
|
673 |
-
"year_bucket": year_bucket,
|
674 |
-
'year':year}
|
675 |
-
|
676 |
-
@staticmethod
|
677 |
-
def collate_meter(batch, tokenizer: PreTrainedTokenizerBase, syllables:bool, is_syllable:bool = False, max_len = 512):
|
678 |
-
index = 1 if syllables and is_syllable else 0
|
679 |
-
tokenizer.model_max_length = max_len
|
680 |
-
data_ids = []
|
681 |
-
metre = []
|
682 |
-
for datum in batch:
|
683 |
-
data_ids += [
|
684 |
-
" ".join(
|
685 |
-
SyllableMaker.syllabify(line.split('#')[-1])
|
686 |
-
) + (line[-1] if line[-1] in [',','.','!','?'] else '') if (syllables and not is_syllable and line) else line.split('#')[-1] for line in datum['input_ids'][index].splitlines()[1:]
|
687 |
-
]
|
688 |
-
if "metre_ids" in batch[0].keys():
|
689 |
-
metre += [TextAnalysis._metre_vector(one_metre) for one_metre in datum['metre_ids']]
|
690 |
-
|
691 |
-
tokenized = tokenizer(data_ids, return_tensors='pt', truncation=True, padding=True)
|
692 |
-
input_ids = tokenized['input_ids']
|
693 |
-
attention = tokenized["attention_mask"]
|
694 |
-
|
695 |
-
metre_ids = None
|
696 |
-
if len(metre) > 0:
|
697 |
-
metre_ids = torch.tensor(np.asarray(metre, dtype=np.int32), dtype=torch.float32)
|
698 |
-
|
699 |
-
return {
|
700 |
-
"input_ids": input_ids,
|
701 |
-
"attention_mask": attention,
|
702 |
-
"rhyme": None,
|
703 |
-
"metre_ids": metre_ids,
|
704 |
-
"year_bucket": None,
|
705 |
-
"year": None}
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
def __init__(self, data_dir = "PoetGen\corpusCzechVerse-master\ccv", cache_dir='./',
|
710 |
-
prompt_length=True, prompt_ending=True, prompt_verse=True, verse_len=[4,6], lower_case=True, val_data_rate=0.05, test_data_rate=0.05):
|
711 |
-
"""Construct the Dataloader and create Datasets
|
712 |
-
|
713 |
-
Args:
|
714 |
-
data_dir (str, optional): Path to data. Defaults to "PoetGen\corpusCzechVerse-master\ccv".
|
715 |
-
cache_dir (str, optional): Path where to store processed data. Defaults to './'.
|
716 |
-
prompt_length (bool, optional): If to prompt the syllable count. Defaults to True.
|
717 |
-
prompt_ending (bool, optional): If to prompt verse ending. Defaults to True.
|
718 |
-
prompt_verse (bool, optional): If to prompt rhyme schema. Defaults to True.
|
719 |
-
verse_len (list, optional): Considered length of strophe. Defaults to [4,6].
|
720 |
-
lower_case (bool, optional): If the string should be in lowercase. Defaults to True.
|
721 |
-
val_data_rate (float, optional): Amount of data to be left for validation. Defaults to 0.1.
|
722 |
-
"""
|
723 |
-
self.lower_case = lower_case
|
724 |
-
self.data_dir = data_dir
|
725 |
-
if os.path.isfile(os.path.join(cache_dir, "body_poet_data.json")) and os.path.isfile(os.path.join(cache_dir, "text_poet_data.json")) \
|
726 |
-
and os.path.isfile(os.path.join(cache_dir, "val_body_poet_data.json")) and os.path.isfile(os.path.join(cache_dir, "val_text_poet_data.json")) \
|
727 |
-
and os.path.isfile(os.path.join(cache_dir, "test_body_poet_data.json")) and os.path.isfile(os.path.join(cache_dir, "test_text_poet_data.json")) :
|
728 |
-
self.create_empty()
|
729 |
-
self.pytorch_dataset_body.data =list(json.load( open( os.path.join(cache_dir, "body_poet_data.json"), 'r')))
|
730 |
-
self.pytorch_dataset_text.data =list(json.load( open( os.path.join(cache_dir, "text_poet_data.json"), 'r')))
|
731 |
-
self.val_pytorch_dataset_body.data = list(json.load( open( os.path.join(cache_dir, "val_body_poet_data.json"), 'r')))
|
732 |
-
self.val_pytorch_dataset_text.data = list(json.load( open( os.path.join(cache_dir, "val_text_poet_data.json"), 'r')))
|
733 |
-
self.test_pytorch_dataset_body.data = list(json.load( open( os.path.join(cache_dir, "test_body_poet_data.json"), 'r')))
|
734 |
-
self.test_pytorch_dataset_text.data = list(json.load( open( os.path.join(cache_dir, "test_text_poet_data.json"), 'r')))
|
735 |
-
else:
|
736 |
-
self.load_json_filenames(prompt_length, prompt_ending, prompt_verse, verse_len=verse_len, val_data_rate=val_data_rate, test_data_rate=test_data_rate)
|
737 |
-
json.dump(self.pytorch_dataset_body.data, open( os.path.join(cache_dir, "body_poet_data.json"), 'w+'), indent = 6)
|
738 |
-
json.dump(self.pytorch_dataset_text.data, open( os.path.join(cache_dir, "text_poet_data.json"), 'w+'), indent = 6)
|
739 |
-
json.dump(self.val_pytorch_dataset_body.data, open( os.path.join(cache_dir, "val_body_poet_data.json"), 'w+'), indent = 6)
|
740 |
-
json.dump(self.val_pytorch_dataset_text.data, open( os.path.join(cache_dir, "val_text_poet_data.json"), 'w+'), indent = 6)
|
741 |
-
json.dump(self.test_pytorch_dataset_body.data, open( os.path.join(cache_dir, "test_body_poet_data.json"), 'w+'), indent = 6)
|
742 |
-
json.dump(self.test_pytorch_dataset_text.data, open( os.path.join(cache_dir, "test_text_poet_data.json"), 'w+'), indent = 6)
|
743 |
-
|
744 |
-
self.load_raw_()
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
#if __name__ == "__main__":
|
749 |
-
# Line Count
|
750 |
-
# print(len(list(CorpusDatasetPytorch(os.path.abspath(os.path.join(os.path.dirname(__file__), "corpusCzechVerse", "ccv")) ).raw_dataset.get_text())))
|
751 |
-
# Strophe Count
|
752 |
-
# print(len(list(CorpusDatasetPytorch(os.path.abspath(os.path.join(os.path.dirname(__file__), "corpusCzechVerse", "ccv")) ).raw_dataset.get_part())))
|
753 |
-
# Poem Count
|
754 |
-
# print(len(list(CorpusDatasetPytorch(os.path.abspath(os.path.join(os.path.dirname(__file__), "corpusCzechVerse", "ccv")) ).raw_dataset.get_body())))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|