Model save
Browse files- README.md +69 -0
- all_results.json +9 -0
- generation_config.json +9 -0
- train_results.json +9 -0
- trainer_state.json +102 -0
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: jkazdan/llama3-8b-stage-2
|
3 |
+
library_name: transformers
|
4 |
+
model_name: llama-8b-dpo-full-1
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- dpo
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for llama-8b-dpo-full-1
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [jkazdan/llama3-8b-stage-2](https://huggingface.co/jkazdan/llama3-8b-stage-2).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="jkazdan/llama-8b-dpo-full-1", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.15.2
|
38 |
+
- Transformers: 4.49.0
|
39 |
+
- Pytorch: 2.6.0
|
40 |
+
- Datasets: 3.3.2
|
41 |
+
- Tokenizers: 0.21.0
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
Cite DPO as:
|
46 |
+
|
47 |
+
```bibtex
|
48 |
+
@inproceedings{rafailov2023direct,
|
49 |
+
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
|
50 |
+
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
|
51 |
+
year = 2023,
|
52 |
+
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
|
53 |
+
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
|
54 |
+
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
|
55 |
+
}
|
56 |
+
```
|
57 |
+
|
58 |
+
Cite TRL as:
|
59 |
+
|
60 |
+
```bibtex
|
61 |
+
@misc{vonwerra2022trl,
|
62 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
63 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
64 |
+
year = 2020,
|
65 |
+
journal = {GitHub repository},
|
66 |
+
publisher = {GitHub},
|
67 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
68 |
+
}
|
69 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"total_flos": 0.0,
|
4 |
+
"train_loss": 0.685900236430921,
|
5 |
+
"train_runtime": 550.0055,
|
6 |
+
"train_samples": 4840,
|
7 |
+
"train_samples_per_second": 8.8,
|
8 |
+
"train_steps_per_second": 0.069
|
9 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 128000,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 128001,
|
5 |
+
"max_length": 4096,
|
6 |
+
"temperature": 0.6,
|
7 |
+
"top_p": 0.9,
|
8 |
+
"transformers_version": "4.49.0"
|
9 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"total_flos": 0.0,
|
4 |
+
"train_loss": 0.685900236430921,
|
5 |
+
"train_runtime": 550.0055,
|
6 |
+
"train_samples": 4840,
|
7 |
+
"train_samples_per_second": 8.8,
|
8 |
+
"train_steps_per_second": 0.069
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 38,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02631578947368421,
|
13 |
+
"grad_norm": 2.592954402820238,
|
14 |
+
"learning_rate": 1.25e-07,
|
15 |
+
"logits/chosen": 0.4306640625,
|
16 |
+
"logits/rejected": 0.537109375,
|
17 |
+
"logps/chosen": -237.5,
|
18 |
+
"logps/rejected": -228.0,
|
19 |
+
"loss": 0.6914,
|
20 |
+
"rewards/accuracies": 0.0,
|
21 |
+
"rewards/chosen": 0.0,
|
22 |
+
"rewards/margins": 0.0,
|
23 |
+
"rewards/rejected": 0.0,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.2631578947368421,
|
28 |
+
"grad_norm": 2.5257972591559534,
|
29 |
+
"learning_rate": 4.6255428393240354e-07,
|
30 |
+
"logits/chosen": 0.4337022602558136,
|
31 |
+
"logits/rejected": 0.4523654580116272,
|
32 |
+
"logps/chosen": -243.11111450195312,
|
33 |
+
"logps/rejected": -236.94444274902344,
|
34 |
+
"loss": 0.6919,
|
35 |
+
"rewards/accuracies": 0.28125,
|
36 |
+
"rewards/chosen": 0.004753430839627981,
|
37 |
+
"rewards/margins": 0.0010722478618845344,
|
38 |
+
"rewards/rejected": 0.0036805470008403063,
|
39 |
+
"step": 10
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.5263157894736842,
|
43 |
+
"grad_norm": 2.555743613102717,
|
44 |
+
"learning_rate": 2.730670898658255e-07,
|
45 |
+
"logits/chosen": 0.36152344942092896,
|
46 |
+
"logits/rejected": 0.45283204317092896,
|
47 |
+
"logps/chosen": -243.5,
|
48 |
+
"logps/rejected": -237.3000030517578,
|
49 |
+
"loss": 0.6873,
|
50 |
+
"rewards/accuracies": 0.54296875,
|
51 |
+
"rewards/chosen": 0.03550415113568306,
|
52 |
+
"rewards/margins": 0.011375045403838158,
|
53 |
+
"rewards/rejected": 0.02410888671875,
|
54 |
+
"step": 20
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.7894736842105263,
|
58 |
+
"grad_norm": 2.6433738154085615,
|
59 |
+
"learning_rate": 6.524777069483525e-08,
|
60 |
+
"logits/chosen": 0.35273438692092896,
|
61 |
+
"logits/rejected": 0.47441405057907104,
|
62 |
+
"logps/chosen": -243.14999389648438,
|
63 |
+
"logps/rejected": -235.14999389648438,
|
64 |
+
"loss": 0.6832,
|
65 |
+
"rewards/accuracies": 0.594531238079071,
|
66 |
+
"rewards/chosen": 0.06180419772863388,
|
67 |
+
"rewards/margins": 0.02066650427877903,
|
68 |
+
"rewards/rejected": 0.04110107570886612,
|
69 |
+
"step": 30
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 1.0,
|
73 |
+
"step": 38,
|
74 |
+
"total_flos": 0.0,
|
75 |
+
"train_loss": 0.685900236430921,
|
76 |
+
"train_runtime": 550.0055,
|
77 |
+
"train_samples_per_second": 8.8,
|
78 |
+
"train_steps_per_second": 0.069
|
79 |
+
}
|
80 |
+
],
|
81 |
+
"logging_steps": 10,
|
82 |
+
"max_steps": 38,
|
83 |
+
"num_input_tokens_seen": 0,
|
84 |
+
"num_train_epochs": 1,
|
85 |
+
"save_steps": 100,
|
86 |
+
"stateful_callbacks": {
|
87 |
+
"TrainerControl": {
|
88 |
+
"args": {
|
89 |
+
"should_epoch_stop": false,
|
90 |
+
"should_evaluate": false,
|
91 |
+
"should_log": false,
|
92 |
+
"should_save": true,
|
93 |
+
"should_training_stop": true
|
94 |
+
},
|
95 |
+
"attributes": {}
|
96 |
+
}
|
97 |
+
},
|
98 |
+
"total_flos": 0.0,
|
99 |
+
"train_batch_size": 8,
|
100 |
+
"trial_name": null,
|
101 |
+
"trial_params": null
|
102 |
+
}
|