Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +17 -17
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.03 +/- 1.11
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b72d23e47b88d4e6d4c74aee074038d24934be170733fc04a35f6d5b5ab48425
|
3 |
+
size 108273
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,21 +33,21 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[ 0.
|
38 |
-
"desired_goal": "[[ 1.
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
-
":serialized:": "
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "
|
48 |
-
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[-0.
|
50 |
-
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
@@ -91,5 +91,5 @@
|
|
91 |
"bounded_above": "[ True True True]",
|
92 |
"_np_random": null
|
93 |
},
|
94 |
-
"n_envs":
|
95 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efb43601ca0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7efb435fd140>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 1300000,
|
23 |
+
"_total_timesteps": 1300000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1682539352024568541,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWV6wEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljwAAAAAAAAABdXmPnjE0rwbsAo/BdXmPnjE0rwbsAo/BdXmPnjE0rwbsAo/BdXmPnjE0rwbsAo/BdXmPnjE0rwbsAo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksFSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljwAAAAAAAAAvFaJP+JLfz1JovI+wABXv2ZTXj8sMg2/72Mzv6QzZb9uHHc/DcZxPooHzr/7Ur6+vFMMvu9yHr8xbYM+lGgOSwVLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWeAAAAAAAAAAF1eY+eMTSvBuwCj8T/3M8/8a7u1yEVzsF1eY+eMTSvBuwCj8T/3M8/8a7u1yEVzsF1eY+eMTSvBuwCj8T/3M8/8a7u1yEVzsF1eY+eMTSvBuwCj8T/3M8/8a7u1yEVzsF1eY+eMTSvBuwCj8T/3M8/8a7u1yEVzuUaA5LBUsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.45084396 -0.02572845 0.54174966]\n [ 0.45084396 -0.02572845 0.54174966]\n [ 0.45084396 -0.02572845 0.54174966]\n [ 0.45084396 -0.02572845 0.54174966]\n [ 0.45084396 -0.02572845 0.54174966]]",
|
38 |
+
"desired_goal": "[[ 1.0729594 0.06232823 0.4738944 ]\n [-0.8398552 0.86846006 -0.5515468 ]\n [-0.7007436 -0.8953192 0.96527755]\n [ 0.23610707 -1.6096051 -0.37172684]\n [-0.13703817 -0.61894125 0.25669244]]",
|
39 |
+
"observation": "[[ 0.45084396 -0.02572845 0.54174966 0.01489236 -0.00573051 0.00328853]\n [ 0.45084396 -0.02572845 0.54174966 0.01489236 -0.00573051 0.00328853]\n [ 0.45084396 -0.02572845 0.54174966 0.01489236 -0.00573051 0.00328853]\n [ 0.45084396 -0.02572845 0.54174966 0.01489236 -0.00573051 0.00328853]\n [ 0.45084396 -0.02572845 0.54174966 0.01489236 -0.00573051 0.00328853]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWV6wEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljwAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksFSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljwAAAAAAAAAfirEPP+DarykGrI9g4QQvT/xCr7EGiU+6B/4PRHWB70yX/A929PpPcMZ/D34clY+0NTfPUamejxUBBo+lGgOSwVLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWeAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBUsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.02394604 -0.0143137 0.08696488]\n [-0.03528262 -0.1356859 0.16123492]\n [ 0.12115461 -0.03316313 0.11736907]\n [ 0.11417361 0.12309601 0.20942295]\n [ 0.10929263 0.01529843 0.15040714]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+WUwRiQK/b+UhpRSlIwBbJRLMowBdJRHQLETvNuLrHF1fZQoaAZoCWgPQwi1qE9yh03lv5SGlFKUaBVLMmgWR0CxE5jrNW2gdX2UKGgGaAloD0MIbazEPCsp8r+UhpRSlGgVSzJoFkdAsRNzWQOnVHV9lChoBmgJaA9DCGzLgLOULAHAlIaUUpRoFUsyaBZHQLETTzFMqSZ1fZQoaAZoCWgPQwhp/wOsVXvwv5SGlFKUaBVLMmgWR0CxEyuMqBmPdX2UKGgGaAloD0MIbxEY6xuYAcCUhpRSlGgVSzJoFkdAsRTqvcJtznV9lChoBmgJaA9DCNxkVBnG3fW/lIaUUpRoFUsyaBZHQLEUxujRD1J1fZQoaAZoCWgPQwjT9xqC43L3v5SGlFKUaBVLMmgWR0CxFKF2JSBLdX2UKGgGaAloD0MIrTHohNABA8CUhpRSlGgVSzJoFkdAsRR9shxHXnV9lChoBmgJaA9DCE2h8xq7xO+/lIaUUpRoFUsyaBZHQLEUWhG6PKd1fZQoaAZoCWgPQwgnhXmPMw37v5SGlFKUaBVLMmgWR0CxFi7xZuAJdX2UKGgGaAloD0MIM4l6wac55b+UhpRSlGgVSzJoFkdAsRYLA44p+nV9lChoBmgJaA9DCGoWaHdI8fG/lIaUUpRoFUsyaBZHQLEV5ZYxL011fZQoaAZoCWgPQwjXTSmvlRD0v5SGlFKUaBVLMmgWR0CxFcGwFC9idX2UKGgGaAloD0MIbTZWYp5V/7+UhpRSlGgVSzJoFkdAsRWeLgn+h3V9lChoBmgJaA9DCHOBy2PNyOm/lIaUUpRoFUsyaBZHQLEXZXL/0d11fZQoaAZoCWgPQwjj4qjcRK3pv5SGlFKUaBVLMmgWR0CxF0GcnVoYdX2UKGgGaAloD0MIFf2hmSfX57+UhpRSlGgVSzJoFkdAsRccT6BRRHV9lChoBmgJaA9DCDC5UWStIe+/lIaUUpRoFUsyaBZHQLEW+BVMmF91fZQoaAZoCWgPQwgKvmn67MD3v5SGlFKUaBVLMmgWR0CxFtSIYWLxdX2UKGgGaAloD0MIahZod0ix6r+UhpRSlGgVSzJoFkdAsRhjho/RmnV9lChoBmgJaA9DCOrsZHCUPOm/lIaUUpRoFUsyaBZHQLEYPyAhB7h1fZQoaAZoCWgPQwgawjHLnoT0v5SGlFKUaBVLMmgWR0CxGBlDv3JxdX2UKGgGaAloD0MIkKD4MeYu/7+UhpRSlGgVSzJoFkdAsRf0a0hNd3V9lChoBmgJaA9DCDhKXp1jQNy/lIaUUpRoFUsyaBZHQLEX0C8OCoV1fZQoaAZoCWgPQwgOoyB4fDv9v5SGlFKUaBVLMmgWR0CxGQ531SOzdX2UKGgGaAloD0MI6YAk7NtJ47+UhpRSlGgVSzJoFkdAsRjqEVWS2nV9lChoBmgJaA9DCACMZ9DQP/a/lIaUUpRoFUsyaBZHQLEYxC3gDRt1fZQoaAZoCWgPQwhoeomxTD/qv5SGlFKUaBVLMmgWR0CxGJ9wzch1dX2UKGgGaAloD0MI8E+pEmXv8b+UhpRSlGgVSzJoFkdAsRh7NKRMe3V9lChoBmgJaA9DCE6c3O9QVPW/lIaUUpRoFUsyaBZHQLEZwqQzUI91fZQoaAZoCWgPQwh6GjBI+rT1v5SGlFKUaBVLMmgWR0CxGZ5H/cWTdX2UKGgGaAloD0MIqRJlbynn7L+UhpRSlGgVSzJoFkdAsRl4SamXPnV9lChoBmgJaA9DCNkHWRZM/PW/lIaUUpRoFUsyaBZHQLEZU5bQkX11fZQoaAZoCWgPQwixbycR4R8GwJSGlFKUaBVLMmgWR0CxGS9/nW8RdX2UKGgGaAloD0MIOZfiqrIv+7+UhpRSlGgVSzJoFkdAsRpzOkcjq3V9lChoBmgJaA9DCGk6OxkcJfu/lIaUUpRoFUsyaBZHQLEaTufEn9h1fZQoaAZoCWgPQwiWzRySWmj1v5SGlFKUaBVLMmgWR0CxGij+vQnhdX2UKGgGaAloD0MIOWItPgWA+r+UhpRSlGgVSzJoFkdAsRoEQTVUdnV9lChoBmgJaA9DCARyiSMPxPe/lIaUUpRoFUsyaBZHQLEZ4DZUT+N1fZQoaAZoCWgPQwiuYYbGE8Hmv5SGlFKUaBVLMmgWR0CxGxw2qDK6dX2UKGgGaAloD0MIxsN7DiyH9b+UhpRSlGgVSzJoFkdAsRr31J17pnV9lChoBmgJaA9DCIdOz7uxoOK/lIaUUpRoFUsyaBZHQLEa0e7tiQV1fZQoaAZoCWgPQwgdqinJOpzhv5SGlFKUaBVLMmgWR0CxGq07r9l3dX2UKGgGaAloD0MImyDqPgCp/b+UhpRSlGgVSzJoFkdAsRqJIkJKJ3V9lChoBmgJaA9DCHh6pSxDHALAlIaUUpRoFUsyaBZHQLEb1wjMV1x1fZQoaAZoCWgPQwgMAcCxZ8/cv5SGlFKUaBVLMmgWR0CxG7KqGUOedX2UKGgGaAloD0MIVK2FWWjn67+UhpRSlGgVSzJoFkdAsRuM0YTCcnV9lChoBmgJaA9DCJt2Mc10L/K/lIaUUpRoFUsyaBZHQLEbZ/9YOlR1fZQoaAZoCWgPQwg3OXzSiQTvv5SGlFKUaBVLMmgWR0CxG0PKp1ifdX2UKGgGaAloD0MIn6wYrg4ABMCUhpRSlGgVSzJoFkdAsRyKpR4yGnV9lChoBmgJaA9DCLFuvDsy1uC/lIaUUpRoFUsyaBZHQLEcZi1RceN1fZQoaAZoCWgPQwg17WKa6R77v5SGlFKUaBVLMmgWR0CxHEAla8pTdX2UKGgGaAloD0MIFf2hmSdX+b+UhpRSlGgVSzJoFkdAsRwbR2KVIXV9lChoBmgJaA9DCOZciqvKPuy/lIaUUpRoFUsyaBZHQLEb9yWiUPh1fZQoaAZoCWgPQwgwgPChRIv4v5SGlFKUaBVLMmgWR0CxHT6GHpKSdX2UKGgGaAloD0MIBfhu88ZJ/7+UhpRSlGgVSzJoFkdAsR0aLLpzLnV9lChoBmgJaA9DCO8fC9EhUATAlIaUUpRoFUsyaBZHQLEc9DCxeLN1fZQoaAZoCWgPQwgRHm0csZbiv5SGlFKUaBVLMmgWR0CxHM9wWFewdX2UKGgGaAloD0MIIa6cvTOa+b+UhpRSlGgVSzJoFkdAsRyrSE12q3V9lChoBmgJaA9DCOay0Tk/xfu/lIaUUpRoFUsyaBZHQLEeDPXTVlR1fZQoaAZoCWgPQwgLJ2n+mNb6v5SGlFKUaBVLMmgWR0CxHeiNfgJkdX2UKGgGaAloD0MIxanWwiy08b+UhpRSlGgVSzJoFkdAsR3CnO0LMXV9lChoBmgJaA9DCIZ0eAjjJ/K/lIaUUpRoFUsyaBZHQLEdnc4o7V91fZQoaAZoCWgPQwi+h0uOOyXjv5SGlFKUaBVLMmgWR0CxHXmzByjpdX2UKGgGaAloD0MIzjRh+8nY8L+UhpRSlGgVSzJoFkdAsR6+ii7Ci3V9lChoBmgJaA9DCKLUXkTbMey/lIaUUpRoFUsyaBZHQLEemgrYoRZ1fZQoaAZoCWgPQwjWdD3RdWHuv5SGlFKUaBVLMmgWR0CxHnQ44p+ddX2UKGgGaAloD0MIrS8S2nIu7b+UhpRSlGgVSzJoFkdAsR5Pc1wYL3V9lChoBmgJaA9DCKTEru3tFuS/lIaUUpRoFUsyaBZHQLEeK1qFh5R1fZQoaAZoCWgPQwiZ1NAGYEPwv5SGlFKUaBVLMmgWR0CxH3OGXXyzdX2UKGgGaAloD0MIngsjvajd6L+UhpRSlGgVSzJoFkdAsR9PPSlWO3V9lChoBmgJaA9DCGIvFLAdDOW/lIaUUpRoFUsyaBZHQLEfKVDKHO91fZQoaAZoCWgPQwj9S1KZYk77v5SGlFKUaBVLMmgWR0CxHwSF0xM4dX2UKGgGaAloD0MIX0VGByTh+7+UhpRSlGgVSzJoFkdAsR7gYj0L+nV9lChoBmgJaA9DCC1gArfupv+/lIaUUpRoFUsyaBZHQLEgHcwQDmt1fZQoaAZoCWgPQwi/Q1GgT+Thv5SGlFKUaBVLMmgWR0CxH/lvZRKpdX2UKGgGaAloD0MIowIn28Ad6b+UhpRSlGgVSzJoFkdAsR/TmzSkTHV9lChoBmgJaA9DCAOZnUXvVOK/lIaUUpRoFUsyaBZHQLEfruSOinJ1fZQoaAZoCWgPQwhFKowtBDnzv5SGlFKUaBVLMmgWR0CxH4rAckt3dX2UKGgGaAloD0MITimvldCd/r+UhpRSlGgVSzJoFkdAsSDW0ojOcHV9lChoBmgJaA9DCBvaAGxABPO/lIaUUpRoFUsyaBZHQLEgsmG/N7l1fZQoaAZoCWgPQwjikuNO6eAFwJSGlFKUaBVLMmgWR0CxIIyNbTttdX2UKGgGaAloD0MIBAKdSZsq7L+UhpRSlGgVSzJoFkdAsSBn2L5yl3V9lChoBmgJaA9DCHb51of1Rum/lIaUUpRoFUsyaBZHQLEgQ5xBE8d1fZQoaAZoCWgPQwhG7X4V4Dvlv5SGlFKUaBVLMmgWR0CxIYPKlpGndX2UKGgGaAloD0MIvW987Zkl97+UhpRSlGgVSzJoFkdAsSFfWRRuTHV9lChoBmgJaA9DCPJAZJEmXgbAlIaUUpRoFUsyaBZHQLEhOXnyNGV1fZQoaAZoCWgPQwghW5avy/Dxv5SGlFKUaBVLMmgWR0CxIRSzgMtsdX2UKGgGaAloD0MIf4eiQJ8I97+UhpRSlGgVSzJoFkdAsSDwezUqhHV9lChoBmgJaA9DCFIMkGgChfW/lIaUUpRoFUsyaBZHQLEiMJ53Tux1fZQoaAZoCWgPQwjkvP+PE+byv5SGlFKUaBVLMmgWR0CxIgyFbmlqdX2UKGgGaAloD0MIjwBuFi9WAsCUhpRSlGgVSzJoFkdAsSHnHZK3/nV9lChoBmgJaA9DCMl1U8prJfq/lIaUUpRoFUsyaBZHQLEhwqzqrzZ1fZQoaAZoCWgPQwgWNC2xMprjv5SGlFKUaBVLMmgWR0CxIZ7xEv0zdX2UKGgGaAloD0MIb9bgfVWu9L+UhpRSlGgVSzJoFkdAsSNO3MINVnV9lChoBmgJaA9DCG3KFd7lIv2/lIaUUpRoFUsyaBZHQLEjKqX4TK11fZQoaAZoCWgPQwifzarP1XYBwJSGlFKUaBVLMmgWR0CxIwTw2ETQdX2UKGgGaAloD0MIzsR0IVa/8r+UhpRSlGgVSzJoFkdAsSLgjhUBGXV9lChoBmgJaA9DCIEKR5BKcfS/lIaUUpRoFUsyaBZHQLEivKLsKLN1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 52000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
91 |
"bounded_above": "[ True True True]",
|
92 |
"_np_random": null
|
93 |
},
|
94 |
+
"n_envs": 5
|
95 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4477c6b47659dfa4320f51dfa3e4a18a4314daa9c8d8702cf36084f1a90336ca
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b2ce3bdb7ea3b0613f85ed6b6e78d6e8b7e3e54eb9497025d3969d2486c188f
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
- Python: 3.9.16
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.0+cu118
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
2 |
- Python: 3.9.16
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1f8e105820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1f8e1066c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682518809953366187, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZVDAPv1mg7xY8Pg+ZVDAPv1mg7xY8Pg+ZVDAPv1mg7xY8Pg+ZVDAPv1mg7xY8Pg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxfGDP9swoT/1ONQ/Y5VTv3SrtD9YhyI/ignIP1khZb9s44q/gGJoPYt7Cz9z4r8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABlUMA+/WaDvFjw+D4zE2w78NgJuwjBojtlUMA+/WaDvFjw+D4zE2w78NgJuwjBojtlUMA+/WaDvFjw+D4zE2w78NgJuwjBojtlUMA+/WaDvFjw+D4zE2w78NgJuwjBojuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.37561336 -0.01604032 0.48620868]\n [ 0.37561336 -0.01604032 0.48620868]\n [ 0.37561336 -0.01604032 0.48620868]\n [ 0.37561336 -0.01604032 0.48620868]]", "desired_goal": "[[ 1.0308157 1.2593035 1.6579882 ]\n [-0.8264982 1.4114823 0.6348777 ]\n [ 1.5627911 -0.8950401 -1.0850654 ]\n [ 0.05673456 0.54485387 1.4990982 ]]", "observation": "[[ 0.37561336 -0.01604032 0.48620868 0.00360222 -0.00210338 0.00496686]\n [ 0.37561336 -0.01604032 0.48620868 0.00360222 -0.00210338 0.00496686]\n [ 0.37561336 -0.01604032 0.48620868 0.00360222 -0.00210338 0.00496686]\n [ 0.37561336 -0.01604032 0.48620868 0.00360222 -0.00210338 0.00496686]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApRZAuyTC9L01CqE96PXRPVQdDz64LMU9xwi1PUDEnj1+dPc9i6yjPGFQKD2+Xfk8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00293104 -0.11951092 0.07863275]\n [ 0.10251981 0.13976032 0.0962767 ]\n [ 0.08839565 0.07752275 0.12082766]\n [ 0.01997974 0.04109228 0.03044021]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdmuZDMfzAsCUhpRSlIwBbJRLMowBdJRHQKnv3z9S/CZ1fZQoaAZoCWgPQwjY9Qt2wwYUwJSGlFKUaBVLMmgWR0Cp76KFAVwhdX2UKGgGaAloD0MIwkzbv7KSA8CUhpRSlGgVSzJoFkdAqe9kwSJ0n3V9lChoBmgJaA9DCGXfFcH/BhDAlIaUUpRoFUsyaBZHQKnvHnoPkJd1fZQoaAZoCWgPQwgQPL69a/AQwJSGlFKUaBVLMmgWR0Cp8O7vG6wudX2UKGgGaAloD0MIo3N+iuMgB8CUhpRSlGgVSzJoFkdAqfCyJ2t+1HV9lChoBmgJaA9DCNRH4A8/v/6/lIaUUpRoFUsyaBZHQKnwdSUC7sh1fZQoaAZoCWgPQwhuMNRhhdsGwJSGlFKUaBVLMmgWR0Cp8C8L8aXKdX2UKGgGaAloD0MISicSTDXTCMCUhpRSlGgVSzJoFkdAqfHodfb9InV9lChoBmgJaA9DCIwubw7XygDAlIaUUpRoFUsyaBZHQKnxrU2DQJJ1fZQoaAZoCWgPQwigpSvYRtwHwJSGlFKUaBVLMmgWR0Cp8W+x4Y78dX2UKGgGaAloD0MI18HB3sRwDsCUhpRSlGgVSzJoFkdAqfEpVsDW9XV9lChoBmgJaA9DCIqSkEjb+BPAlIaUUpRoFUsyaBZHQKny7EbYK6Z1fZQoaAZoCWgPQwigFRiyulUKwJSGlFKUaBVLMmgWR0Cp8q9Vmz0IdX2UKGgGaAloD0MIxeQNMPONFMCUhpRSlGgVSzJoFkdAqfJximVJMHV9lChoBmgJaA9DCNV1qKYkywXAlIaUUpRoFUsyaBZHQKnyK0Jng511fZQoaAZoCWgPQwgGZK93f7wPwJSGlFKUaBVLMmgWR0Cp8+9CE6DHdX2UKGgGaAloD0MIE9TwLaxbCcCUhpRSlGgVSzJoFkdAqfOyZc9nsnV9lChoBmgJaA9DCBfzc0NT1gHAlIaUUpRoFUsyaBZHQKnzdKHO8kF1fZQoaAZoCWgPQwiBlxk2ynoFwJSGlFKUaBVLMmgWR0Cp8y6X0Gu+dX2UKGgGaAloD0MI31FjQswlBsCUhpRSlGgVSzJoFkdAqfTxfBvaUXV9lChoBmgJaA9DCKErEaj+YQTAlIaUUpRoFUsyaBZHQKn0tMSK3ux1fZQoaAZoCWgPQwiNs+kI4AYIwJSGlFKUaBVLMmgWR0Cp9Heb3Gn5dX2UKGgGaAloD0MIW0HTEivjEMCUhpRSlGgVSzJoFkdAqfQxXZGrj3V9lChoBmgJaA9DCDvhJTj1AQvAlIaUUpRoFUsyaBZHQKn15RJEpiJ1fZQoaAZoCWgPQwgFxY8xd00RwJSGlFKUaBVLMmgWR0Cp9agsbvPUdX2UKGgGaAloD0MIDr3Fw3tuBMCUhpRSlGgVSzJoFkdAqfVqVt4zJ3V9lChoBmgJaA9DCMhcGVQb/AzAlIaUUpRoFUsyaBZHQKn1JBiTdLx1fZQoaAZoCWgPQwjNy2H3HWMOwJSGlFKUaBVLMmgWR0Cp91SWiUPhdX2UKGgGaAloD0MIoDL+fcblCcCUhpRSlGgVSzJoFkdAqfcYWac7Q3V9lChoBmgJaA9DCBnlmZfDLgrAlIaUUpRoFUsyaBZHQKn220waisZ1fZQoaAZoCWgPQwjbi2g7pu4MwJSGlFKUaBVLMmgWR0Cp9pWhysCDdX2UKGgGaAloD0MIjNr9KsD3DcCUhpRSlGgVSzJoFkdAqfjjlNlAeXV9lChoBmgJaA9DCInTSba6LBDAlIaUUpRoFUsyaBZHQKn4p4tYjjd1fZQoaAZoCWgPQwgmUprN49ANwJSGlFKUaBVLMmgWR0Cp+GqAavRrdX2UKGgGaAloD0MIe737471KFsCUhpRSlGgVSzJoFkdAqfgk4BFNL3V9lChoBmgJaA9DCKM883LYnQzAlIaUUpRoFUsyaBZHQKn6e+3Ytg91fZQoaAZoCWgPQwjKqDKMu8EKwJSGlFKUaBVLMmgWR0Cp+j+mm+CcdX2UKGgGaAloD0MIWmjnNAukEMCUhpRSlGgVSzJoFkdAqfoChpQDWHV9lChoBmgJaA9DCOyi6IGPYQ3AlIaUUpRoFUsyaBZHQKn5vM1TBIp1fZQoaAZoCWgPQwioAYOkT7sQwJSGlFKUaBVLMmgWR0Cp/B9E1EVndX2UKGgGaAloD0MI7dYyGY7nBsCUhpRSlGgVSzJoFkdAqfvjGo73f3V9lChoBmgJaA9DCD81XrpJjAnAlIaUUpRoFUsyaBZHQKn7piqABkt1fZQoaAZoCWgPQwggYK3aNSEMwJSGlFKUaBVLMmgWR0Cp+2DY7JXAdX2UKGgGaAloD0MIujE9YYk3EcCUhpRSlGgVSzJoFkdAqf4F+EytWHV9lChoBmgJaA9DCPSI0XMLXQHAlIaUUpRoFUsyaBZHQKn9y33Hq/x1fZQoaAZoCWgPQwgUCDvFqiEIwJSGlFKUaBVLMmgWR0Cp/Y7kwN9ZdX2UKGgGaAloD0MIyH4WS5FcDcCUhpRSlGgVSzJoFkdAqf1JUDMeOnV9lChoBmgJaA9DCBEebRyxlg3AlIaUUpRoFUsyaBZHQKn/1wkPczt1fZQoaAZoCWgPQwhAS1ewjRgOwJSGlFKUaBVLMmgWR0Cp/5sTewcHdX2UKGgGaAloD0MIFFrW/WNh/7+UhpRSlGgVSzJoFkdAqf9d2aDwpnV9lChoBmgJaA9DCNiBc0aUdhPAlIaUUpRoFUsyaBZHQKn/GCXhOxl1fZQoaAZoCWgPQwgZOKClKxgLwJSGlFKUaBVLMmgWR0CqAY1t4zJqdX2UKGgGaAloD0MIswdagSGrCsCUhpRSlGgVSzJoFkdAqgFRUgjhUHV9lChoBmgJaA9DCLtkHCPZgwrAlIaUUpRoFUsyaBZHQKoBFGsFMZh1fZQoaAZoCWgPQwga+ie4WBEHwJSGlFKUaBVLMmgWR0CqAM7dznzQdX2UKGgGaAloD0MID5ccd0r3FsCUhpRSlGgVSzJoFkdAqgKvf/FR53V9lChoBmgJaA9DCDGzz2OU5wbAlIaUUpRoFUsyaBZHQKoCcpLmITJ1fZQoaAZoCWgPQwgKTRJLyj0SwJSGlFKUaBVLMmgWR0CqAjTB68g7dX2UKGgGaAloD0MIz02bcRpiBMCUhpRSlGgVSzJoFkdAqgHuf29L6HV9lChoBmgJaA9DCPAZidAI5hTAlIaUUpRoFUsyaBZHQKoDuF7D2rZ1fZQoaAZoCWgPQwhQqRJlb6kMwJSGlFKUaBVLMmgWR0CqA3vYnOSodX2UKGgGaAloD0MI+7K0U3NZB8CUhpRSlGgVSzJoFkdAqgM+KoAGS3V9lChoBmgJaA9DCCe+2lGcQwLAlIaUUpRoFUsyaBZHQKoC+ELYwqR1fZQoaAZoCWgPQwgeFf93RMUAwJSGlFKUaBVLMmgWR0CqBPkAYHgQdX2UKGgGaAloD0MI7nn+tFEdAcCUhpRSlGgVSzJoFkdAqgS9aIN3GHV9lChoBmgJaA9DCLH5uDZUjA7AlIaUUpRoFUsyaBZHQKoEf8ejmCB1fZQoaAZoCWgPQwhAa378pUUTwJSGlFKUaBVLMmgWR0CqBDnCfpUxdX2UKGgGaAloD0MIfotOllpPCsCUhpRSlGgVSzJoFkdAqgYCpm29c3V9lChoBmgJaA9DCLnjTX6LjgjAlIaUUpRoFUsyaBZHQKoFxfKISDh1fZQoaAZoCWgPQwj+mNamsb0OwJSGlFKUaBVLMmgWR0CqBYhkAggYdX2UKGgGaAloD0MIU5EKYwtBBMCUhpRSlGgVSzJoFkdAqgVCDmKZUnV9lChoBmgJaA9DCE890uC2tg3AlIaUUpRoFUsyaBZHQKoG+By0a611fZQoaAZoCWgPQwj4bvPGSSEOwJSGlFKUaBVLMmgWR0CqBruARTS9dX2UKGgGaAloD0MILCy4H/DgCsCUhpRSlGgVSzJoFkdAqgZ97SiM53V9lChoBmgJaA9DCPeTMT7MjhDAlIaUUpRoFUsyaBZHQKoGN6v7m+11fZQoaAZoCWgPQwjdek0PCooHwJSGlFKUaBVLMmgWR0CqCAHHWBjGdX2UKGgGaAloD0MITfbP04DBCsCUhpRSlGgVSzJoFkdAqgfFb1RLsnV9lChoBmgJaA9DCB6kp8gh4gjAlIaUUpRoFUsyaBZHQKoHiIxgy/N1fZQoaAZoCWgPQwgLJv4o6kwPwJSGlFKUaBVLMmgWR0CqB0M6q815dX2UKGgGaAloD0MI7Q2+MJmqBMCUhpRSlGgVSzJoFkdAqgkAyhzvJHV9lChoBmgJaA9DCMdHizOG+QrAlIaUUpRoFUsyaBZHQKoIxAMUh3d1fZQoaAZoCWgPQwglQbgCCpUMwJSGlFKUaBVLMmgWR0CqCIZdnkDIdX2UKGgGaAloD0MIGqVL/5LUD8CUhpRSlGgVSzJoFkdAqghAJ9iMHnV9lChoBmgJaA9DCDMWTWcnYxPAlIaUUpRoFUsyaBZHQKoKAymhufp1fZQoaAZoCWgPQwjsavKU1XQOwJSGlFKUaBVLMmgWR0CqCcZ5qubJdX2UKGgGaAloD0MIjWMke4R6CMCUhpRSlGgVSzJoFkdAqgmJGH58B3V9lChoBmgJaA9DCPjj9ssnawzAlIaUUpRoFUsyaBZHQKoJQtthuwZ1fZQoaAZoCWgPQwg7jh8qjXgQwJSGlFKUaBVLMmgWR0CqCxKoybhFdX2UKGgGaAloD0MI8fEJ2XnbDsCUhpRSlGgVSzJoFkdAqgrVwkxASnV9lChoBmgJaA9DCBUA4xk0tA7AlIaUUpRoFUsyaBZHQKoKmBDG96F1fZQoaAZoCWgPQwiMuWsJ+aAZwJSGlFKUaBVLMmgWR0CqClHQyAQQdX2UKGgGaAloD0MITUpBt5ekEcCUhpRSlGgVSzJoFkdAqgwdImPYF3V9lChoBmgJaA9DCFjnGJC9vgXAlIaUUpRoFUsyaBZHQKoL4Q2/BWR1fZQoaAZoCWgPQwiNgApHkKoJwJSGlFKUaBVLMmgWR0CqC6NW+49YdX2UKGgGaAloD0MI2su209aoB8CUhpRSlGgVSzJoFkdAqgtdNzr/sHV9lChoBmgJaA9DCNtv7URJSBLAlIaUUpRoFUsyaBZHQKoNILronrp1fZQoaAZoCWgPQwjjUpW2uDYQwJSGlFKUaBVLMmgWR0CqDOPicXnAdX2UKGgGaAloD0MIlzeHa7UHF8CUhpRSlGgVSzJoFkdAqgymitaIN3V9lChoBmgJaA9DCN154jlbcBLAlIaUUpRoFUsyaBZHQKoMYFEiMYN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efb43601ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efb435fd140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1300000, "_total_timesteps": 1300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682539352024568541, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV6wEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljwAAAAAAAAABdXmPnjE0rwbsAo/BdXmPnjE0rwbsAo/BdXmPnjE0rwbsAo/BdXmPnjE0rwbsAo/BdXmPnjE0rwbsAo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksFSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljwAAAAAAAAAvFaJP+JLfz1JovI+wABXv2ZTXj8sMg2/72Mzv6QzZb9uHHc/DcZxPooHzr/7Ur6+vFMMvu9yHr8xbYM+lGgOSwVLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWeAAAAAAAAAAF1eY+eMTSvBuwCj8T/3M8/8a7u1yEVzsF1eY+eMTSvBuwCj8T/3M8/8a7u1yEVzsF1eY+eMTSvBuwCj8T/3M8/8a7u1yEVzsF1eY+eMTSvBuwCj8T/3M8/8a7u1yEVzsF1eY+eMTSvBuwCj8T/3M8/8a7u1yEVzuUaA5LBUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.45084396 -0.02572845 0.54174966]\n [ 0.45084396 -0.02572845 0.54174966]\n [ 0.45084396 -0.02572845 0.54174966]\n [ 0.45084396 -0.02572845 0.54174966]\n [ 0.45084396 -0.02572845 0.54174966]]", "desired_goal": "[[ 1.0729594 0.06232823 0.4738944 ]\n [-0.8398552 0.86846006 -0.5515468 ]\n [-0.7007436 -0.8953192 0.96527755]\n [ 0.23610707 -1.6096051 -0.37172684]\n [-0.13703817 -0.61894125 0.25669244]]", "observation": "[[ 0.45084396 -0.02572845 0.54174966 0.01489236 -0.00573051 0.00328853]\n [ 0.45084396 -0.02572845 0.54174966 0.01489236 -0.00573051 0.00328853]\n [ 0.45084396 -0.02572845 0.54174966 0.01489236 -0.00573051 0.00328853]\n [ 0.45084396 -0.02572845 0.54174966 0.01489236 -0.00573051 0.00328853]\n [ 0.45084396 -0.02572845 0.54174966 0.01489236 -0.00573051 0.00328853]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV6wEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljwAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksFSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljwAAAAAAAAAfirEPP+DarykGrI9g4QQvT/xCr7EGiU+6B/4PRHWB70yX/A929PpPcMZ/D34clY+0NTfPUamejxUBBo+lGgOSwVLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWeAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02394604 -0.0143137 0.08696488]\n [-0.03528262 -0.1356859 0.16123492]\n [ 0.12115461 -0.03316313 0.11736907]\n [ 0.11417361 0.12309601 0.20942295]\n [ 0.10929263 0.01529843 0.15040714]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+WUwRiQK/b+UhpRSlIwBbJRLMowBdJRHQLETvNuLrHF1fZQoaAZoCWgPQwi1qE9yh03lv5SGlFKUaBVLMmgWR0CxE5jrNW2gdX2UKGgGaAloD0MIbazEPCsp8r+UhpRSlGgVSzJoFkdAsRNzWQOnVHV9lChoBmgJaA9DCGzLgLOULAHAlIaUUpRoFUsyaBZHQLETTzFMqSZ1fZQoaAZoCWgPQwhp/wOsVXvwv5SGlFKUaBVLMmgWR0CxEyuMqBmPdX2UKGgGaAloD0MIbxEY6xuYAcCUhpRSlGgVSzJoFkdAsRTqvcJtznV9lChoBmgJaA9DCNxkVBnG3fW/lIaUUpRoFUsyaBZHQLEUxujRD1J1fZQoaAZoCWgPQwjT9xqC43L3v5SGlFKUaBVLMmgWR0CxFKF2JSBLdX2UKGgGaAloD0MIrTHohNABA8CUhpRSlGgVSzJoFkdAsRR9shxHXnV9lChoBmgJaA9DCE2h8xq7xO+/lIaUUpRoFUsyaBZHQLEUWhG6PKd1fZQoaAZoCWgPQwgnhXmPMw37v5SGlFKUaBVLMmgWR0CxFi7xZuAJdX2UKGgGaAloD0MIM4l6wac55b+UhpRSlGgVSzJoFkdAsRYLA44p+nV9lChoBmgJaA9DCGoWaHdI8fG/lIaUUpRoFUsyaBZHQLEV5ZYxL011fZQoaAZoCWgPQwjXTSmvlRD0v5SGlFKUaBVLMmgWR0CxFcGwFC9idX2UKGgGaAloD0MIbTZWYp5V/7+UhpRSlGgVSzJoFkdAsRWeLgn+h3V9lChoBmgJaA9DCHOBy2PNyOm/lIaUUpRoFUsyaBZHQLEXZXL/0d11fZQoaAZoCWgPQwjj4qjcRK3pv5SGlFKUaBVLMmgWR0CxF0GcnVoYdX2UKGgGaAloD0MIFf2hmSfX57+UhpRSlGgVSzJoFkdAsRccT6BRRHV9lChoBmgJaA9DCDC5UWStIe+/lIaUUpRoFUsyaBZHQLEW+BVMmF91fZQoaAZoCWgPQwgKvmn67MD3v5SGlFKUaBVLMmgWR0CxFtSIYWLxdX2UKGgGaAloD0MIahZod0ix6r+UhpRSlGgVSzJoFkdAsRhjho/RmnV9lChoBmgJaA9DCOrsZHCUPOm/lIaUUpRoFUsyaBZHQLEYPyAhB7h1fZQoaAZoCWgPQwgawjHLnoT0v5SGlFKUaBVLMmgWR0CxGBlDv3JxdX2UKGgGaAloD0MIkKD4MeYu/7+UhpRSlGgVSzJoFkdAsRf0a0hNd3V9lChoBmgJaA9DCDhKXp1jQNy/lIaUUpRoFUsyaBZHQLEX0C8OCoV1fZQoaAZoCWgPQwgOoyB4fDv9v5SGlFKUaBVLMmgWR0CxGQ531SOzdX2UKGgGaAloD0MI6YAk7NtJ47+UhpRSlGgVSzJoFkdAsRjqEVWS2nV9lChoBmgJaA9DCACMZ9DQP/a/lIaUUpRoFUsyaBZHQLEYxC3gDRt1fZQoaAZoCWgPQwhoeomxTD/qv5SGlFKUaBVLMmgWR0CxGJ9wzch1dX2UKGgGaAloD0MI8E+pEmXv8b+UhpRSlGgVSzJoFkdAsRh7NKRMe3V9lChoBmgJaA9DCE6c3O9QVPW/lIaUUpRoFUsyaBZHQLEZwqQzUI91fZQoaAZoCWgPQwh6GjBI+rT1v5SGlFKUaBVLMmgWR0CxGZ5H/cWTdX2UKGgGaAloD0MIqRJlbynn7L+UhpRSlGgVSzJoFkdAsRl4SamXPnV9lChoBmgJaA9DCNkHWRZM/PW/lIaUUpRoFUsyaBZHQLEZU5bQkX11fZQoaAZoCWgPQwixbycR4R8GwJSGlFKUaBVLMmgWR0CxGS9/nW8RdX2UKGgGaAloD0MIOZfiqrIv+7+UhpRSlGgVSzJoFkdAsRpzOkcjq3V9lChoBmgJaA9DCGk6OxkcJfu/lIaUUpRoFUsyaBZHQLEaTufEn9h1fZQoaAZoCWgPQwiWzRySWmj1v5SGlFKUaBVLMmgWR0CxGij+vQnhdX2UKGgGaAloD0MIOWItPgWA+r+UhpRSlGgVSzJoFkdAsRoEQTVUdnV9lChoBmgJaA9DCARyiSMPxPe/lIaUUpRoFUsyaBZHQLEZ4DZUT+N1fZQoaAZoCWgPQwiuYYbGE8Hmv5SGlFKUaBVLMmgWR0CxGxw2qDK6dX2UKGgGaAloD0MIxsN7DiyH9b+UhpRSlGgVSzJoFkdAsRr31J17pnV9lChoBmgJaA9DCIdOz7uxoOK/lIaUUpRoFUsyaBZHQLEa0e7tiQV1fZQoaAZoCWgPQwgdqinJOpzhv5SGlFKUaBVLMmgWR0CxGq07r9l3dX2UKGgGaAloD0MImyDqPgCp/b+UhpRSlGgVSzJoFkdAsRqJIkJKJ3V9lChoBmgJaA9DCHh6pSxDHALAlIaUUpRoFUsyaBZHQLEb1wjMV1x1fZQoaAZoCWgPQwgMAcCxZ8/cv5SGlFKUaBVLMmgWR0CxG7KqGUOedX2UKGgGaAloD0MIVK2FWWjn67+UhpRSlGgVSzJoFkdAsRuM0YTCcnV9lChoBmgJaA9DCJt2Mc10L/K/lIaUUpRoFUsyaBZHQLEbZ/9YOlR1fZQoaAZoCWgPQwg3OXzSiQTvv5SGlFKUaBVLMmgWR0CxG0PKp1ifdX2UKGgGaAloD0MIn6wYrg4ABMCUhpRSlGgVSzJoFkdAsRyKpR4yGnV9lChoBmgJaA9DCLFuvDsy1uC/lIaUUpRoFUsyaBZHQLEcZi1RceN1fZQoaAZoCWgPQwg17WKa6R77v5SGlFKUaBVLMmgWR0CxHEAla8pTdX2UKGgGaAloD0MIFf2hmSdX+b+UhpRSlGgVSzJoFkdAsRwbR2KVIXV9lChoBmgJaA9DCOZciqvKPuy/lIaUUpRoFUsyaBZHQLEb9yWiUPh1fZQoaAZoCWgPQwgwgPChRIv4v5SGlFKUaBVLMmgWR0CxHT6GHpKSdX2UKGgGaAloD0MIBfhu88ZJ/7+UhpRSlGgVSzJoFkdAsR0aLLpzLnV9lChoBmgJaA9DCO8fC9EhUATAlIaUUpRoFUsyaBZHQLEc9DCxeLN1fZQoaAZoCWgPQwgRHm0csZbiv5SGlFKUaBVLMmgWR0CxHM9wWFewdX2UKGgGaAloD0MIIa6cvTOa+b+UhpRSlGgVSzJoFkdAsRyrSE12q3V9lChoBmgJaA9DCOay0Tk/xfu/lIaUUpRoFUsyaBZHQLEeDPXTVlR1fZQoaAZoCWgPQwgLJ2n+mNb6v5SGlFKUaBVLMmgWR0CxHeiNfgJkdX2UKGgGaAloD0MIxanWwiy08b+UhpRSlGgVSzJoFkdAsR3CnO0LMXV9lChoBmgJaA9DCIZ0eAjjJ/K/lIaUUpRoFUsyaBZHQLEdnc4o7V91fZQoaAZoCWgPQwi+h0uOOyXjv5SGlFKUaBVLMmgWR0CxHXmzByjpdX2UKGgGaAloD0MIzjRh+8nY8L+UhpRSlGgVSzJoFkdAsR6+ii7Ci3V9lChoBmgJaA9DCKLUXkTbMey/lIaUUpRoFUsyaBZHQLEemgrYoRZ1fZQoaAZoCWgPQwjWdD3RdWHuv5SGlFKUaBVLMmgWR0CxHnQ44p+ddX2UKGgGaAloD0MIrS8S2nIu7b+UhpRSlGgVSzJoFkdAsR5Pc1wYL3V9lChoBmgJaA9DCKTEru3tFuS/lIaUUpRoFUsyaBZHQLEeK1qFh5R1fZQoaAZoCWgPQwiZ1NAGYEPwv5SGlFKUaBVLMmgWR0CxH3OGXXyzdX2UKGgGaAloD0MIngsjvajd6L+UhpRSlGgVSzJoFkdAsR9PPSlWO3V9lChoBmgJaA9DCGIvFLAdDOW/lIaUUpRoFUsyaBZHQLEfKVDKHO91fZQoaAZoCWgPQwj9S1KZYk77v5SGlFKUaBVLMmgWR0CxHwSF0xM4dX2UKGgGaAloD0MIX0VGByTh+7+UhpRSlGgVSzJoFkdAsR7gYj0L+nV9lChoBmgJaA9DCC1gArfupv+/lIaUUpRoFUsyaBZHQLEgHcwQDmt1fZQoaAZoCWgPQwi/Q1GgT+Thv5SGlFKUaBVLMmgWR0CxH/lvZRKpdX2UKGgGaAloD0MIowIn28Ad6b+UhpRSlGgVSzJoFkdAsR/TmzSkTHV9lChoBmgJaA9DCAOZnUXvVOK/lIaUUpRoFUsyaBZHQLEfruSOinJ1fZQoaAZoCWgPQwhFKowtBDnzv5SGlFKUaBVLMmgWR0CxH4rAckt3dX2UKGgGaAloD0MITimvldCd/r+UhpRSlGgVSzJoFkdAsSDW0ojOcHV9lChoBmgJaA9DCBvaAGxABPO/lIaUUpRoFUsyaBZHQLEgsmG/N7l1fZQoaAZoCWgPQwjikuNO6eAFwJSGlFKUaBVLMmgWR0CxIIyNbTttdX2UKGgGaAloD0MIBAKdSZsq7L+UhpRSlGgVSzJoFkdAsSBn2L5yl3V9lChoBmgJaA9DCHb51of1Rum/lIaUUpRoFUsyaBZHQLEgQ5xBE8d1fZQoaAZoCWgPQwhG7X4V4Dvlv5SGlFKUaBVLMmgWR0CxIYPKlpGndX2UKGgGaAloD0MIvW987Zkl97+UhpRSlGgVSzJoFkdAsSFfWRRuTHV9lChoBmgJaA9DCPJAZJEmXgbAlIaUUpRoFUsyaBZHQLEhOXnyNGV1fZQoaAZoCWgPQwghW5avy/Dxv5SGlFKUaBVLMmgWR0CxIRSzgMtsdX2UKGgGaAloD0MIf4eiQJ8I97+UhpRSlGgVSzJoFkdAsSDwezUqhHV9lChoBmgJaA9DCFIMkGgChfW/lIaUUpRoFUsyaBZHQLEiMJ53Tux1fZQoaAZoCWgPQwjkvP+PE+byv5SGlFKUaBVLMmgWR0CxIgyFbmlqdX2UKGgGaAloD0MIjwBuFi9WAsCUhpRSlGgVSzJoFkdAsSHnHZK3/nV9lChoBmgJaA9DCMl1U8prJfq/lIaUUpRoFUsyaBZHQLEhwqzqrzZ1fZQoaAZoCWgPQwgWNC2xMprjv5SGlFKUaBVLMmgWR0CxIZ7xEv0zdX2UKGgGaAloD0MIb9bgfVWu9L+UhpRSlGgVSzJoFkdAsSNO3MINVnV9lChoBmgJaA9DCG3KFd7lIv2/lIaUUpRoFUsyaBZHQLEjKqX4TK11fZQoaAZoCWgPQwifzarP1XYBwJSGlFKUaBVLMmgWR0CxIwTw2ETQdX2UKGgGaAloD0MIzsR0IVa/8r+UhpRSlGgVSzJoFkdAsSLgjhUBGXV9lChoBmgJaA9DCIEKR5BKcfS/lIaUUpRoFUsyaBZHQLEivKLsKLN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 5, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.026990933227353, "std_reward": 1.114186918010313, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-26T21:15:43.978992"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2381
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a73b6b1760e5b5b46304876b92990a6cb256c906fdc728a183b3e730b7798e9
|
3 |
size 2381
|