squareV3 / handler.py
jla25's picture
Update handler.py
05da434 verified
raw
history blame
1.76 kB
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
class EndpointHandler:
def __init__(self, model_dir):
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)
self.model.eval()
def preprocess(self, data):
if not isinstance(data, dict) or "inputs" not in data or data["inputs"] is None:
raise ValueError("La entrada debe ser un diccionario con la clave 'inputs' y un valor válido.")
input_text = "Generate a valid JSON capturing data from this text: " + data["inputs"]
tokens = self.tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
if not tokens or not tokens["input_ids"]:
raise ValueError("Error al tokenizar el texto de entrada. Verifica el texto.")
return tokens
def inference(self, tokens):
generate_kwargs = {
"max_length": 1000,
"num_beams": 5,
"do_sample": True,
"temperature": 0.3,
"top_k": 50,
"top_p": 0.9,
"repetition_penalty": 2.5
}
with torch.no_grad():
outputs = self.model.generate(**tokens, **generate_kwargs)
if outputs is None or len(outputs) == 0:
raise ValueError("El modelo no generó ninguna salida.")
return outputs
def postprocess(self, outputs):
decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"generated_text": decoded_output}
def __call__(self, data):
tokens = self.preprocess(data)
outputs = self.inference(tokens)
result = self.postprocess(outputs)
return result