squareV3 / handler.py
jla25's picture
Update handler.py
e29f84e verified
raw
history blame
3.2 kB
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import json
model_name = "jla25/squareV3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
class EndpointHandler:
def __init__(self, model_dir):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
self.model.eval()
def preprocess(self, data):
if not isinstance(data, dict) or "inputs" not in data or data["inputs"] is None:
raise ValueError("La entrada debe ser un diccionario con la clave 'inputs' y un valor v谩lido.")
# Prompt personalizado para guiar al modelo
input_text = ({data['inputs']})
# Imprimir el texto generado para el prompt
print(f"Prompt generado para el modelo: {input_text}")
tokens = self.tokenizer(input_text, return_tensors="pt", truncation=True, padding="max_length", max_length=1024)
return tokens
def inference(self, tokens):
generate_kwargs = {
"max_length": 1024,
"num_beams": 5,
"do_sample": False,
"temperature": 0.3,
"top_k": 50,
"top_p": 0.7,
"repetition_penalty": 2.5
}
with torch.no_grad():
outputs = self.model.generate(**tokens, **generate_kwargs)
return outputs
def clean_output(self, output):
# Extraer el JSON dentro del texto generado
try:
start_index = output.index("{")
end_index = output.rindex("}") + 1
return output[start_index:end_index]
except ValueError:
# Si no hay un JSON v谩lido en el texto
return output
def validate_json(self, json_text):
# Validar el JSON generado
try:
json_data = json.loads(json_text)
if "values" in json_data and isinstance(json_data["values"], list):
return {"is_valid": True, "json_data": json_data}
else:
return {"is_valid": False, "error": "El JSON no contiene el formato esperado."}
except json.JSONDecodeError as e:
return {"is_valid": False, "error": f"Error decodificando JSON: {str(e)}"}
def postprocess(self, outputs):
decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
cleaned_output = self.clean_output(decoded_output)
# Imprimir siempre el texto generado para depuraci贸n
print(f"Texto generado: {decoded_output}")
print(f"JSON limpiado: {cleaned_output}")
# Validar el JSON generado
validation_result = self.validate_json(cleaned_output)
if not validation_result["is_valid"]:
print(f"Error en la validaci贸n: {validation_result['error']}")
raise ValueError(f"JSON inv谩lido: {validation_result['error']}")
return {"response": validation_result["json_data"]}
def __call__(self, data):
tokens = self.preprocess(data)
outputs = self.inference(tokens)
result = self.postprocess(outputs)
return result