squareV3 / handler.py
jla25's picture
Update handler.py
62a752c verified
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import json
model_name = "jla25/squareV3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
class EndpointHandler:
def __init__(self, model_dir):
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)
self.model.eval()
def preprocess(self, data):
if not isinstance(data, dict) or "inputs" not in data or data["inputs"] is None:
raise ValueError("La entrada debe ser un diccionario con la clave 'inputs' y un valor v谩lido.")
# Prompt personalizado para guiar al modelo
input_text = f"Generate a valid JSON capturing data from this text:{data['inputs']}"
print(f"Prompt generado para el modelo: {input_text}")
input_text = input_text.encode("utf-8").decode("utf-8")
tokens = self.tokenizer(input_text, return_tensors="pt", truncation=True, padding="max_length", max_length=1024)
return tokens
def inference(self, tokens):
generate_kwargs = {
"max_length": 512,
"num_beams": 5,
"do_sample": False,
"temperature": 0.3,
"top_k": 50,
"top_p": 0.8,
"early_stopping": True, # A帽adir explicitamente esta configuraci贸n
"repetition_penalty": 2.5
}
with torch.no_grad():
outputs = self.model.generate(**tokens, **generate_kwargs)
return outputs
def clean_output(self, output):
try:
start_index = output.index("{")
end_index = output.rindex("}") + 1
return output[start_index:end_index]
except ValueError:
return output
def postprocess(self, outputs):
decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
cleaned_output = self.clean_output(decoded_output)
# Imprimir siempre el texto generado para depuraci贸n
print(f"Texto generado por el modelo: {decoded_output}")
print(f"JSON limpiado: {cleaned_output}")
return {"response": cleaned_output}
def __call__(self, data):
tokens = self.preprocess(data)
outputs = self.inference(tokens)
result = self.postprocess(outputs)
return result
# Crear una instancia del handler
handler = EndpointHandler(model_name)