jmurphy97 commited on
Commit
47e7326
·
1 Parent(s): ab13322

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 776.35 +/- 604.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dcab4e4152452687bd9dbf3cd3b07493bfc66146b34be88efa9ba57172d6ad9
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1574161e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1574161ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1574161f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f15741de040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f15741de0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f15741de160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f15741de1f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f15741de280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f15741de310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f15741de3a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f15741de430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f15741de4c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f15741643c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1681315631680440892,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABNy67/Kx/q/KAiowGpckL9JK1C+RW6APSuZUD6HnxE/UuNePxnqV7zAyzC/2I07vAlp1z/avgo7ia0rP3b9zTzkKb8+78Kcu/lBRj9AxA496ez6P4fEg7spc3C/oHWOvJW+XT/iFus+I07cPnmTRD+puh0/S3QDvzlKFT85+v8+Z4K4vjhyIMAMHiS/KlQ1vzG+Pz34epK/qgzIPh3FtT8h1Ye/M5AewENZLD9li4685hRVPzjE379i1Fq/KmOBv6wXdb+UVlY8NoWyP5caU78RxpO/oWILwCNO3D6Zsaa/lHaJP48Yj77AuSA/Fz8iPzpmH0AA+kU/ZvOdPowGsb8JNmI/KLEGvdVVKb/80Vw+TE2aP7BZQkDYcS0/1YGDvReplD+JCZRAwNjFvX3Zr7/qNXW/L7w3PTCeIUA2jYq9EcaTv+IW6z4jTtw+eZNEP/woPb91ugHAIqGxv8vVjL9Cmbe+YbcJPjlyCb/EABs+UpxiPy5N47xysS+/H+afvChKwD/Hkyq9Y68sP5gYVj0Oh5i+cRZzvej9+7xw3Tw7a9yHP3xPzbtml0k++DwoPJW+XT/iFus+I07cPnmTRD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACsNag2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFZyIvQAAAACzl+u/AAAAAGfJ2j0AAAAAHE79PwAAAADSlP09AAAAAHkl+T8AAAAAZAqjPQAAAACaCfi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxCa/NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIjJdD0AAAAAeYzpvwAAAAD7WuQ9AAAAAPMg5j8AAAAAOvejvQAAAABYXuM/AAAAAItQur0AAAAAEmnbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIKr37UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBPUqE9AAAAALMvAMAAAAAAvY+PvQAAAAAXkf0/AAAAAOmU2z0AAAAAjMr/PwAAAACoNvs8AAAAADiX8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA118K2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu2QGPgAAAACfS+K/AAAAABri8r0AAAAAXZngPwAAAAA2t6s8AAAAAFL6+D8AAAAAGisEPQAAAAB6Zuu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJS45QJokAyMAWyUTegDjAF0lEdArNZUb3oLX3V9lChoBkdAkR0afjCHh2gHTegDaAhHQKzXoypJf6Z1fZQoaAZHQJc8+0Sh8IBoB03oA2gIR0Cs2/N4JNTMdX2UKGgGR0CXrz34sVcmaAdN6ANoCEdArN/rslb/wXV9lChoBkdAihDjSgGr0mgHTegDaAhHQKzidOeJ53V1fZQoaAZHQJTOGZ5Rjz9oB03oA2gIR0Cs48RlYlpodX2UKGgGR0CUx3AUtZmqaAdN6ANoCEdArOnDundfs3V9lChoBkdAjfvX4j8k2WgHTegDaAhHQKzwNoMa0hN1fZQoaAZHQJIb3l0YCQtoB03oA2gIR0Cs8rbqyGBXdX2UKGgGR0B/Fz889wFUaAdN6ANoCEdArPQMwtapxXV9lChoBkdAl0urmEGqxWgHTegDaAhHQKz4ezCUHIJ1fZQoaAZHQJWnO2QXAM5oB03oA2gIR0Cs/JcOby6MdX2UKGgGR0CTrkJwsGxEaAdN6ANoCEdArP8Y5YHPeHV9lChoBkdAkjAoEwFkhGgHTegDaAhHQK0AcVLzwtt1fZQoaAZHQJT3f+R5kbxoB03oA2gIR0CtBWc3VCokdX2UKGgGR0CWHKEOAiFCaAdN6ANoCEdArQvPvSc9XHV9lChoBkdAliriJXQtz2gHTegDaAhHQK0Pafg75mB1fZQoaAZHQJI6sZflZHNoB03oA2gIR0CtEOOMVDa5dX2UKGgGR0CVfCCu2Zy/aAdN6ANoCEdArRVRDLKV6nV9lChoBkdAlfh2ykbgj2gHTegDaAhHQK0Zj6KtPpJ1fZQoaAZHQHX2qo2n889oB03oA2gIR0CtHAJeeFtbdX2UKGgGR0CR9hjWCmMwaAdN6ANoCEdArR1GaQV9GHV9lChoBkfAXxSUHIIWxmgHTegDaAhHQK0ht5v99+h1fZQoaAZHQHT0ubI91U5oB03oA2gIR0CtJ1/wRXfZdX2UKGgGR0CVovvTgEU1aAdN6ANoCEdArStSqABkqnV9lChoBkdAl6x/MjeKsWgHTegDaAhHQK0tbfb9If91fZQoaAZHQHYZsZHd43ZoB03oA2gIR0CtMfCN0eU7dX2UKGgGR0CRNT0fozN2aAdN6ANoCEdArTYqdvsJIHV9lChoBkdAh6L4Fqzqr2gHTegDaAhHQK04tCbc45t1fZQoaAZHQJd2ipBHCoFoB03oA2gIR0CtOgmi5/b1dX2UKGgGR0CXkU5mh/RWaAdN6ANoCEdArT5zpRoAXHV9lChoBkdAlhFo95hScmgHTegDaAhHQK1C+7Wd3B51fZQoaAZHQJdn6RcNYr9oB03oA2gIR0CtRtG4I8hcdX2UKGgGR0CWfMrjHXEqaAdN6ANoCEdArUjwU8FINHV9lChoBkdAl9miIxgy/WgHTegDaAhHQK1OynpB5X51fZQoaAZHQH8wBzNliBpoB03oA2gIR0CtUt8qvvBrdX2UKGgGR0CaDXzpHI6saAdN6ANoCEdArVVQIhQm/nV9lChoBkdAmBPI4MnZ02gHTegDaAhHQK1Wn6zE74l1fZQoaAZHQInP+Awwj+toB03oA2gIR0CtWwlvQ4S6dX2UKGgGR0CYeLTZxrBTaAdN6ANoCEdArV8Mer+5v3V9lChoBkdAknd7YoRZlmgHTegDaAhHQK1iPfb9If91fZQoaAZHQJlnbOJLuhNoB03oA2gIR0CtZBd7ngYQdX2UKGgGR0CX8tL26ClKaAdN6ANoCEdArWsTIDHOr3V9lChoBkdAmIY14TsY22gHTegDaAhHQK1vLAqur6t1fZQoaAZHQJUgi16Vt41oB03oA2gIR0CtcbY+jdpJdX2UKGgGR0B9O3IKc/dJaAdN6ANoCEdArXMAUJv5xnV9lChoBkdAmIyf6oESumgHTegDaAhHQK13bsyi22J1fZQoaAZHQIML7SG8EmpoB03oA2gIR0Cte4+cpb2UdX2UKGgGR0CU6rghKUV0aAdN6ANoCEdArX4LBKtga3V9lChoBkdAld9ZMg2ZRmgHTegDaAhHQK1/fdweeWh1fZQoaAZHQIFjOMGX5WRoB03oA2gIR0Cthler2g3+dX2UKGgGR0CVAE+sYEW7aAdN6ANoCEdArYwHYcvM83V9lChoBkdAmPsYvBacJGgHTegDaAhHQK2Omh2W6bx1fZQoaAZHQIp9o0EX+ERoB03oA2gIR0Ctj+xiobXIdX2UKGgGR0CVdLe6Zpi7aAdN6ANoCEdArZReyZ8a43V9lChoBkdAlb92n4wh4mgHTegDaAhHQK2YrymQ8wJ1fZQoaAZHQIKMpP69CeFoB03oA2gIR0Ctmy/g75mAdX2UKGgGR0CYFaR3u/lAaAdN6ANoCEdArZyAznA6+3V9lChoBkdAlXCPBJqZdGgHTckDaAhHQK2huBvrGBF1fZQoaAZHQIpPfjIaLn9oB03oA2gIR0CtqQNknTiLdX2UKGgGR0CM5HPDYRNAaAdN6ANoCEdArauU8V58jXV9lChoBkdAkuF6WLP2PGgHTegDaAhHQK2s6Ae7tiR1fZQoaAZHQJqBQlHBk7RoB03oA2gIR0CtsQJ3gUDddX2UKGgGR0CGs/O+qR2baAdN6ANoCEdArbWOu3c583V9lChoBkdAfusb5uZTh2gHTegDaAhHQK24KfYBeX11fZQoaAZHQJYitI/Z/TdoB03oA2gIR0CtuYI4VARkdX2UKGgGR0CV0Y7DVH4HaAdN6ANoCEdArb25aRp1zXV9lChoBkdAgc2Vie/Ya2gHTegDaAhHQK3Ec9FnZkF1fZQoaAZHQJXwYDklu3toB03oA2gIR0CtyEalDWsjdX2UKGgGR0CVRtpHI6sAaAdN6ANoCEdArcmtjTa0yHV9lChoBkdAknd+IqLCN2gHTegDaAhHQK3Nw12q1gJ1fZQoaAZHQIYz9Kyv9tNoB03oA2gIR0Ct0lvq9oN/dX2UKGgGR7/zSu2Zy+6AaAdN6ANoCEdArdT9THbRGHV9lChoBkdAiNi7D2rXDmgHTegDaAhHQK3WSsf7rLR1fZQoaAZHQJHOe0u14PhoB03oA2gIR0Ct2kaC+UQkdX2UKGgGR0CT7vASWZ7YaAdN6ANoCEdAreBO6kIomXV9lChoBkdAhv3JfICEH2gHTegDaAhHQK3kZ9deIEd1fZQoaAZHQJUM51A7gbZoB03oA2gIR0Ct5oEHD766dX2UKGgGR0CO7kGwA2hqaAdN6ANoCEdAreqcEV32VXV9lChoBkdAksnotYjjaWgHTegDaAhHQK3vJ1RLsa91fZQoaAZHQJd2nwazeGhoB03oA2gIR0Ct8bCd8RcvdX2UKGgGR0CHKQ8yN4qxaAdN6ANoCEdArfMKePJaJXV9lChoBkdAk1ps3ZPEbmgHTegDaAhHQK33OqPOpsJ1fZQoaAZHQJjRO/WUbDNoB03oA2gIR0Ct/G+o99tudX2UKGgGR0CXM10u14PgaAdN6ANoCEdArgBIQg9vCXV9lChoBkdAhbOY4yXUpmgHTegDaAhHQK4CmRNh3JR1fZQoaAZHQJif7NPgvUVoB03oA2gIR0CuB9ocaOxTdX2UKGgGR0CapCvRqoIfaAdN6ANoCEdArgxU+xGDtnV9lChoBkdAlg9t/8VHnWgHTegDaAhHQK4Ozxp+MIh1fZQoaAZHQJIffsZ5zHVoB03oA2gIR0CuEB7aqS5idX2UKGgGR0CWliIikftAaAdN6ANoCEdArhQXfQ8fWHV9lChoBkdAg6AfPX05EWgHTegDaAhHQK4Y1rRBu4x1fZQoaAZHQJfbM75mAb1oB03oA2gIR0CuHEc/D+BIdX2UKGgGR0CX29Rcu8K5aAdN6ANoCEdArh40l9jPOnV9lChoBkdAlUKP779AHGgHTegDaAhHQK4kpImPYFt1fZQoaAZHQJRixtdiUgVoB03oA2gIR0CuKUwzch1UdX2UKGgGR0CFJJgeii7DaAdN6ANoCEdArivh+H8CP3V9lChoBkdAg6pVB+nZTWgHTegDaAhHQK4tQDLbHp91fZQoaAZHQJZ1LKT0QK9oB03oA2gIR0CuMW8nuy/sdX2UKGgGR0CGgbpyp71JaAdN6ANoCEdArjYm6Zpi7XVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6229762e9acaf233474f5a891cd3eb5747a0fad8c689145fe52f1bc053bf8163
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff40e4f4f74dc280a338967711774547e55cb79f0c780bb3895f8298c7876646
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1574161e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1574161ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1574161f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f15741de040>", "_build": "<function ActorCriticPolicy._build at 0x7f15741de0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f15741de160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f15741de1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f15741de280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f15741de310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f15741de3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f15741de430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f15741de4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f15741643c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681315631680440892, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABNy67/Kx/q/KAiowGpckL9JK1C+RW6APSuZUD6HnxE/UuNePxnqV7zAyzC/2I07vAlp1z/avgo7ia0rP3b9zTzkKb8+78Kcu/lBRj9AxA496ez6P4fEg7spc3C/oHWOvJW+XT/iFus+I07cPnmTRD+puh0/S3QDvzlKFT85+v8+Z4K4vjhyIMAMHiS/KlQ1vzG+Pz34epK/qgzIPh3FtT8h1Ye/M5AewENZLD9li4685hRVPzjE379i1Fq/KmOBv6wXdb+UVlY8NoWyP5caU78RxpO/oWILwCNO3D6Zsaa/lHaJP48Yj77AuSA/Fz8iPzpmH0AA+kU/ZvOdPowGsb8JNmI/KLEGvdVVKb/80Vw+TE2aP7BZQkDYcS0/1YGDvReplD+JCZRAwNjFvX3Zr7/qNXW/L7w3PTCeIUA2jYq9EcaTv+IW6z4jTtw+eZNEP/woPb91ugHAIqGxv8vVjL9Cmbe+YbcJPjlyCb/EABs+UpxiPy5N47xysS+/H+afvChKwD/Hkyq9Y68sP5gYVj0Oh5i+cRZzvej9+7xw3Tw7a9yHP3xPzbtml0k++DwoPJW+XT/iFus+I07cPnmTRD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACsNag2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFZyIvQAAAACzl+u/AAAAAGfJ2j0AAAAAHE79PwAAAADSlP09AAAAAHkl+T8AAAAAZAqjPQAAAACaCfi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxCa/NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIjJdD0AAAAAeYzpvwAAAAD7WuQ9AAAAAPMg5j8AAAAAOvejvQAAAABYXuM/AAAAAItQur0AAAAAEmnbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIKr37UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBPUqE9AAAAALMvAMAAAAAAvY+PvQAAAAAXkf0/AAAAAOmU2z0AAAAAjMr/PwAAAACoNvs8AAAAADiX8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA118K2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu2QGPgAAAACfS+K/AAAAABri8r0AAAAAXZngPwAAAAA2t6s8AAAAAFL6+D8AAAAAGisEPQAAAAB6Zuu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJS45QJokAyMAWyUTegDjAF0lEdArNZUb3oLX3V9lChoBkdAkR0afjCHh2gHTegDaAhHQKzXoypJf6Z1fZQoaAZHQJc8+0Sh8IBoB03oA2gIR0Cs2/N4JNTMdX2UKGgGR0CXrz34sVcmaAdN6ANoCEdArN/rslb/wXV9lChoBkdAihDjSgGr0mgHTegDaAhHQKzidOeJ53V1fZQoaAZHQJTOGZ5Rjz9oB03oA2gIR0Cs48RlYlpodX2UKGgGR0CUx3AUtZmqaAdN6ANoCEdArOnDundfs3V9lChoBkdAjfvX4j8k2WgHTegDaAhHQKzwNoMa0hN1fZQoaAZHQJIb3l0YCQtoB03oA2gIR0Cs8rbqyGBXdX2UKGgGR0B/Fz889wFUaAdN6ANoCEdArPQMwtapxXV9lChoBkdAl0urmEGqxWgHTegDaAhHQKz4ezCUHIJ1fZQoaAZHQJWnO2QXAM5oB03oA2gIR0Cs/JcOby6MdX2UKGgGR0CTrkJwsGxEaAdN6ANoCEdArP8Y5YHPeHV9lChoBkdAkjAoEwFkhGgHTegDaAhHQK0AcVLzwtt1fZQoaAZHQJT3f+R5kbxoB03oA2gIR0CtBWc3VCokdX2UKGgGR0CWHKEOAiFCaAdN6ANoCEdArQvPvSc9XHV9lChoBkdAliriJXQtz2gHTegDaAhHQK0Pafg75mB1fZQoaAZHQJI6sZflZHNoB03oA2gIR0CtEOOMVDa5dX2UKGgGR0CVfCCu2Zy/aAdN6ANoCEdArRVRDLKV6nV9lChoBkdAlfh2ykbgj2gHTegDaAhHQK0Zj6KtPpJ1fZQoaAZHQHX2qo2n889oB03oA2gIR0CtHAJeeFtbdX2UKGgGR0CR9hjWCmMwaAdN6ANoCEdArR1GaQV9GHV9lChoBkfAXxSUHIIWxmgHTegDaAhHQK0ht5v99+h1fZQoaAZHQHT0ubI91U5oB03oA2gIR0CtJ1/wRXfZdX2UKGgGR0CVovvTgEU1aAdN6ANoCEdArStSqABkqnV9lChoBkdAl6x/MjeKsWgHTegDaAhHQK0tbfb9If91fZQoaAZHQHYZsZHd43ZoB03oA2gIR0CtMfCN0eU7dX2UKGgGR0CRNT0fozN2aAdN6ANoCEdArTYqdvsJIHV9lChoBkdAh6L4Fqzqr2gHTegDaAhHQK04tCbc45t1fZQoaAZHQJd2ipBHCoFoB03oA2gIR0CtOgmi5/b1dX2UKGgGR0CXkU5mh/RWaAdN6ANoCEdArT5zpRoAXHV9lChoBkdAlhFo95hScmgHTegDaAhHQK1C+7Wd3B51fZQoaAZHQJdn6RcNYr9oB03oA2gIR0CtRtG4I8hcdX2UKGgGR0CWfMrjHXEqaAdN6ANoCEdArUjwU8FINHV9lChoBkdAl9miIxgy/WgHTegDaAhHQK1OynpB5X51fZQoaAZHQH8wBzNliBpoB03oA2gIR0CtUt8qvvBrdX2UKGgGR0CaDXzpHI6saAdN6ANoCEdArVVQIhQm/nV9lChoBkdAmBPI4MnZ02gHTegDaAhHQK1Wn6zE74l1fZQoaAZHQInP+Awwj+toB03oA2gIR0CtWwlvQ4S6dX2UKGgGR0CYeLTZxrBTaAdN6ANoCEdArV8Mer+5v3V9lChoBkdAknd7YoRZlmgHTegDaAhHQK1iPfb9If91fZQoaAZHQJlnbOJLuhNoB03oA2gIR0CtZBd7ngYQdX2UKGgGR0CX8tL26ClKaAdN6ANoCEdArWsTIDHOr3V9lChoBkdAmIY14TsY22gHTegDaAhHQK1vLAqur6t1fZQoaAZHQJUgi16Vt41oB03oA2gIR0CtcbY+jdpJdX2UKGgGR0B9O3IKc/dJaAdN6ANoCEdArXMAUJv5xnV9lChoBkdAmIyf6oESumgHTegDaAhHQK13bsyi22J1fZQoaAZHQIML7SG8EmpoB03oA2gIR0Cte4+cpb2UdX2UKGgGR0CU6rghKUV0aAdN6ANoCEdArX4LBKtga3V9lChoBkdAld9ZMg2ZRmgHTegDaAhHQK1/fdweeWh1fZQoaAZHQIFjOMGX5WRoB03oA2gIR0Cthler2g3+dX2UKGgGR0CVAE+sYEW7aAdN6ANoCEdArYwHYcvM83V9lChoBkdAmPsYvBacJGgHTegDaAhHQK2Omh2W6bx1fZQoaAZHQIp9o0EX+ERoB03oA2gIR0Ctj+xiobXIdX2UKGgGR0CVdLe6Zpi7aAdN6ANoCEdArZReyZ8a43V9lChoBkdAlb92n4wh4mgHTegDaAhHQK2YrymQ8wJ1fZQoaAZHQIKMpP69CeFoB03oA2gIR0Ctmy/g75mAdX2UKGgGR0CYFaR3u/lAaAdN6ANoCEdArZyAznA6+3V9lChoBkdAlXCPBJqZdGgHTckDaAhHQK2huBvrGBF1fZQoaAZHQIpPfjIaLn9oB03oA2gIR0CtqQNknTiLdX2UKGgGR0CM5HPDYRNAaAdN6ANoCEdArauU8V58jXV9lChoBkdAkuF6WLP2PGgHTegDaAhHQK2s6Ae7tiR1fZQoaAZHQJqBQlHBk7RoB03oA2gIR0CtsQJ3gUDddX2UKGgGR0CGs/O+qR2baAdN6ANoCEdArbWOu3c583V9lChoBkdAfusb5uZTh2gHTegDaAhHQK24KfYBeX11fZQoaAZHQJYitI/Z/TdoB03oA2gIR0CtuYI4VARkdX2UKGgGR0CV0Y7DVH4HaAdN6ANoCEdArb25aRp1zXV9lChoBkdAgc2Vie/Ya2gHTegDaAhHQK3Ec9FnZkF1fZQoaAZHQJXwYDklu3toB03oA2gIR0CtyEalDWsjdX2UKGgGR0CVRtpHI6sAaAdN6ANoCEdArcmtjTa0yHV9lChoBkdAknd+IqLCN2gHTegDaAhHQK3Nw12q1gJ1fZQoaAZHQIYz9Kyv9tNoB03oA2gIR0Ct0lvq9oN/dX2UKGgGR7/zSu2Zy+6AaAdN6ANoCEdArdT9THbRGHV9lChoBkdAiNi7D2rXDmgHTegDaAhHQK3WSsf7rLR1fZQoaAZHQJHOe0u14PhoB03oA2gIR0Ct2kaC+UQkdX2UKGgGR0CT7vASWZ7YaAdN6ANoCEdAreBO6kIomXV9lChoBkdAhv3JfICEH2gHTegDaAhHQK3kZ9deIEd1fZQoaAZHQJUM51A7gbZoB03oA2gIR0Ct5oEHD766dX2UKGgGR0CO7kGwA2hqaAdN6ANoCEdAreqcEV32VXV9lChoBkdAksnotYjjaWgHTegDaAhHQK3vJ1RLsa91fZQoaAZHQJd2nwazeGhoB03oA2gIR0Ct8bCd8RcvdX2UKGgGR0CHKQ8yN4qxaAdN6ANoCEdArfMKePJaJXV9lChoBkdAk1ps3ZPEbmgHTegDaAhHQK33OqPOpsJ1fZQoaAZHQJjRO/WUbDNoB03oA2gIR0Ct/G+o99tudX2UKGgGR0CXM10u14PgaAdN6ANoCEdArgBIQg9vCXV9lChoBkdAhbOY4yXUpmgHTegDaAhHQK4CmRNh3JR1fZQoaAZHQJif7NPgvUVoB03oA2gIR0CuB9ocaOxTdX2UKGgGR0CapCvRqoIfaAdN6ANoCEdArgxU+xGDtnV9lChoBkdAlg9t/8VHnWgHTegDaAhHQK4Ozxp+MIh1fZQoaAZHQJIffsZ5zHVoB03oA2gIR0CuEB7aqS5idX2UKGgGR0CWliIikftAaAdN6ANoCEdArhQXfQ8fWHV9lChoBkdAg6AfPX05EWgHTegDaAhHQK4Y1rRBu4x1fZQoaAZHQJfbM75mAb1oB03oA2gIR0CuHEc/D+BIdX2UKGgGR0CX29Rcu8K5aAdN6ANoCEdArh40l9jPOnV9lChoBkdAlUKP779AHGgHTegDaAhHQK4kpImPYFt1fZQoaAZHQJRixtdiUgVoB03oA2gIR0CuKUwzch1UdX2UKGgGR0CFJJgeii7DaAdN6ANoCEdArivh+H8CP3V9lChoBkdAg6pVB+nZTWgHTegDaAhHQK4tQDLbHp91fZQoaAZHQJZ1LKT0QK9oB03oA2gIR0CuMW8nuy/sdX2UKGgGR0CGgbpyp71JaAdN6ANoCEdArjYm6Zpi7XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b41e65c907d49f3d13653d15473c20bcb7d10ed3c853f0117117889e526fd14
3
+ size 1118785
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 776.3481311563403, "std_reward": 604.1747336119599, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T17:12:23.980203"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4732e4390363a6b11b6493e768e04e8098bf1026b062f73c4ab48796464ecb0
3
+ size 2487