{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd6a656f080>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681641703048775659, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACglVr6m+xY+42wNP0FOxr758hQ+6qpVPynY/j7qRI6/wYszPymJwb5MC08/APUNPoDU9r0pUDO/+iEnPwz1Bb9lpkU/czQ+v3LRPz91yM+8R3CNv+EUDDzl1D2/zk7Jv99gQD+aLLg+Bhn/PlN2gr+WbUO/nzqvPb0fDT98p288OmLFvjWUt7/Hz5U+onlpvEGg3r5cM4E/m3HUugSzqD7BTpm/a9FUP2bR8D2yBj+9qo5YPoN0ej8xqTY/7dYOPyT6gr9auLQ+4+rvvmSa8rq6VKq/miy4PgYZ/z5TdoK/+c8aP4CMRz+dEMI+mE1SP/Uiib9Me9c/Ft4ePg2KvL8GeIE/QOJyvQ9poD83vSo8B2dCv7//CcA5EMs9VoyUv/qQqr7A/sy/R7k+P5dObb0ebI2/9RggPORwJ7/BhoY+32BAP5osuD4GGf8+U3aCv3AT3b+iapY/tEWtPQEvob9R6Ds+nsqLPfnNCD4L4S0/Pk8xvm8Wv7tCSnW/0WmIvLJ1sb/NuNE7CMIuP7yB2Tyl8AbAWICeuyEBPD8O69A8a4uNvzfgwTsLIE+/z21svN9gQD+aLLg+Bhn/PiUrez+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC2A621AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARzO9PQAAAAD9nOW/AAAAAD/kAj4AAAAAYd7xPwAAAADwUzK9AAAAACefAEAAAAAAlHdSPQAAAACa2dq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3iJoNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA6e17wAAAAA1VnxvwAAAADplNU9AAAAAPoC3j8AAAAAZGC2PAAAAAC8MPM/AAAAAL+VEjwAAAAAJAftvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKKoLDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIANbtw9AAAAAP362r8AAAAAIyfGvQAAAABOw+8/AAAAADANET4AAAAAe6DiPwAAAADdB7+9AAAAAGAi3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvWYu1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtC9RvQAAAABXUgHAAAAAACsEszwAAAAAQyPnPwAAAAA24xq6AAAAAKOP6z8AAAAAvyfsPQAAAABc6uS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI40ECA+Y+mMAWyUTegDjAF0lEdAqMukSCe2/nV9lChoBkdAlJlYCMglnmgHTegDaAhHQKjLvw84gih1fZQoaAZHQJGcwydnTRZoB03oA2gIR0Co0yJjtoi+dX2UKGgGR0CR688VHnU2aAdN6ANoCEdAqNM6CvovBnV9lChoBkdAkqI4j0L+gmgHTegDaAhHQKjZf6l+Eyt1fZQoaAZHQIRyPKp1ifBoB03oA2gIR0Co2ay08eS0dX2UKGgGR0CSRJ/+85CGaAdN6ANoCEdAqOJTKq4pdHV9lChoBkdAgM+boB7u2WgHTegDaAhHQKjibOYYzi11fZQoaAZHQHyWoPXkHUtoB03oA2gIR0Co5ru3DvVmdX2UKGgGR0B8tkfIS13MaAdN6ANoCEdAqObfIEKVp3V9lChoBkdAmDOSb+cYqGgHTegDaAhHQKjuNZ26kIp1fZQoaAZHQIF42SU1Q69oB03oA2gIR0Co7k2CuloEdX2UKGgGR0CXKxH4XXRPaAdN6ANoCEdAqPN+YfGMoHV9lChoBkdAmVo0WVNYbWgHTegDaAhHQKjzrFa0Qbx1fZQoaAZHQJUSm4d6syVoB03oA2gIR0Co/PpUYKpldX2UKGgGR0CQ6u9jPOY6aAdN6ANoCEdAqP0Sh6By0nV9lChoBkdAlo10Pxx1gmgHTegDaAhHQKkBNXS0BwN1fZQoaAZHQJhUCqsEJSloB03oA2gIR0CpAU/s3Q2NdX2UKGgGR0CV54o3aSLZaAdN6ANoCEdAqQjCuIRAbHV9lChoBkdAkPBJBHCoCWgHTegDaAhHQKkI2rhBJI11fZQoaAZHQJPwOlSCOFRoB03oA2gIR0CpDSoq0+khdX2UKGgGR0CWNO3hGYrsaAdN6ANoCEdAqQ1SZH/cWXV9lChoBkdAl00QKBun/GgHTegDaAhHQKkXpbqQiiZ1fZQoaAZHQH3SzLbHp8poB03oA2gIR0CpF75OBUaRdX2UKGgGR0CHywAJb+tKaAdN6ANoCEdAqRv3JV81GnV9lChoBkdAlb1KpLmITGgHTegDaAhHQKkcEd/8VHp1fZQoaAZHQJad7XOGCZpoB03oA2gIR0CpI2f3evZAdX2UKGgGR0CYk7bVBlcyaAdN6ANoCEdAqSOAnYxtYXV9lChoBkdAk+lCLuQZGmgHTegDaAhHQKknmhlDneV1fZQoaAZHQJeNYvVVghNoB03oA2gIR0CpJ7WQnx8VdX2UKGgGR0CQD9GEf1YhaAdN6ANoCEdAqTIkcABDHHV9lChoBkdAin5Ks+3YtmgHTegDaAhHQKkyPLrX18N1fZQoaAZHQJOyXc580DVoB03oA2gIR0CpNmCSidrgdX2UKGgGR0CRLNuuzQeFaAdN6ANoCEdAqTZ60ngHeXV9lChoBkdAlOSzwhGH6GgHTegDaAhHQKk9o7MgU111fZQoaAZHQJVWW+i8FpxoB03oA2gIR0CpPbuIhyKfdX2UKGgGR0CVofnQID5kaAdN6ANoCEdAqUHJwOvt+nV9lChoBkdAiQ744ACGOGgHTegDaAhHQKlB5Lzwtrd1fZQoaAZHQJMoqBYmsvJoB03oA2gIR0CpSu0QkHD8dX2UKGgGR0CH8H0wrUb2aAdN6ANoCEdAqUsUnJDE33V9lChoBkdAkHym2oegc2gHTegDaAhHQKlQXgtvn8t1fZQoaAZHQJS30HfMwDhoB03oA2gIR0CpUHfIbOu8dX2UKGgGR0CWWUdZJTVEaAdN6ANoCEdAqVfRdGAkLXV9lChoBkdAlLuJRbbDdmgHTegDaAhHQKlX6W6bvw51fZQoaAZHQJY/d89fTkRoB03oA2gIR0CpXAM2eg+RdX2UKGgGR0CU1tK508vFaAdN6ANoCEdAqVwdVo6CDnV9lChoBkdAlJMukk8ifWgHTegDaAhHQKlkIQiiZfF1fZQoaAZHQJWYgaOxSpBoB03oA2gIR0CpZESq2jO+dX2UKGgGR0CV5k7BfrrxaAdN6ANoCEdAqWqNJg9eQnV9lChoBkdAlk65nHvMKWgHTegDaAhHQKlqtytmthd1fZQoaAZHQJKE4xh2GItoB03oA2gIR0Cpci8HfMwDdX2UKGgGR0CSNTRx95QhaAdN6ANoCEdAqXJFpsXSB3V9lChoBkdAk1ZxT0g8sGgHTegDaAhHQKl2YWhysCF1fZQoaAZHQJHCT2alUIdoB03oA2gIR0CpdnwzDXOGdX2UKGgGR0CZEttWMju8aAdN6ANoCEdAqX3Vv863iXV9lChoBkdAlm4aZUkv9WgHTegDaAhHQKl97z1bqyJ1fZQoaAZHQJYcyQHRkVhoB03oA2gIR0Cpg7nPeHi4dX2UKGgGR0CXZlCXhOxjaAdN6ANoCEdAqYPkFyJbdXV9lChoBkdAlgkptSAH3WgHTegDaAhHQKmMfVCHARF1fZQoaAZHQJa2nA8B+4NoB03oA2gIR0CpjJeg13t8dX2UKGgGR0CXFzJP69CeaAdN6ANoCEdAqZC7lYEGJXV9lChoBkdAlVBERSP2f2gHTegDaAhHQKmQ3CLuQZJ1fZQoaAZHQJgoQWKuSwJoB03oA2gIR0CpmCzIvJzUdX2UKGgGR0CW5VbYK6WgaAdN6ANoCEdAqZhEp7TlT3V9lChoBkdAlkKpHNHH3mgHTegDaAhHQKmc4pb2USt1fZQoaAZHQJUCdKjBVMpoB03oA2gIR0CpnQoAwPAgdX2UKGgGR0CX9jOz6ab4aAdN6ANoCEdAqaalBdD6WXV9lChoBkdAmBcJhrnDBWgHTegDaAhHQKmmvyzXz191fZQoaAZHQJK2LWlMyrRoB03oA2gIR0CpqvWPDHfedX2UKGgGR0CA/gmx+rlvaAdN6ANoCEdAqasTP4VRDXV9lChoBkdAkMSNEofCAWgHTegDaAhHQKmyT1L8Jld1fZQoaAZHQJadVuUD+zdoB03oA2gIR0CpsmcQRPGidX2UKGgGR0COM9yMDOkdaAdN6ANoCEdAqbaOb/ffoHV9lChoBkdAlLGCbhFVk2gHTegDaAhHQKm2qKa5PM11fZQoaAZHQJP46PvKEFpoB03oA2gIR0CpwNumR/3GdX2UKGgGR0CVAdT238XOaAdN6ANoCEdAqcDzdFfAsXV9lChoBkdAkVzZ66asqGgHTegDaAhHQKnFGlC1JDp1fZQoaAZHQH8jh6v7m+1oB03oA2gIR0CpxTZP2wmmdX2UKGgGR0CKL5/iHZbqaAdN6ANoCEdAqcyvc+JP7HV9lChoBkdAgGsy/j81oGgHTegDaAhHQKnMxpYcNpd1fZQoaAZHQImghqwhW5poB03oA2gIR0Cp0P73fyf+dX2UKGgGR0CL5cHIp6QeaAdN6ANoCEdAqdEZo/Rmb3V9lChoBkdAgRHdIf8uSWgHTegDaAhHQKnbDilzltF1fZQoaAZHQIiw/8wYcedoB03oA2gIR0Cp2zT5O8CgdX2UKGgGR0B85tc7hegMaAdN6ANoCEdAqd/v+MqBmXV9lChoBkdAe2vxiG34K2gHTegDaAhHQKngCsNlRP51fZQoaAZHQIegMqBmPHVoB03oA2gIR0Cp58TRplBhdX2UKGgGR0B6e5R64UeuaAdN6ANoCEdAqefiKcd5p3V9lChoBkdAi6AxLsa86GgHTegDaAhHQKnsZ9F4LTh1fZQoaAZHQI52a1RceKdoB03oA2gIR0Cp7IR7qptKdX2UKGgGR0CLA3B+F10UaAdN6ANoCEdAqfY/lQuVX3V9lChoBkdAgRWZTIeYD2gHTegDaAhHQKn2ZznRsuZ1fZQoaAZHQHtMAEyLyc1oB03oA2gIR0Cp+8Flbu+idX2UKGgGR0CAcP0KZ2IPaAdN6ANoCEdAqfvdI9TxXnV9lChoBkdAfg5tsN2C/WgHTegDaAhHQKoDkQPqcEx1fZQoaAZHQII03uLJjlRoB03oA2gIR0CqA6th/iHZdX2UKGgGR0CGkz0p3HJcaAdN6ANoCEdAqgfc0WM0g3V9lChoBkdAk4zufywwCmgHTegDaAhHQKoH90uDjBF1fZQoaAZHQHnCw8jiXIFoB03oA2gIR0CqEMD2Bas7dX2UKGgGR0CVDNzrNW2gaAdN6ANoCEdAqhDmc4HX3HVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}