--- language: en license: mit tags: - atc --- # Fine-Tuned Agglomerative Token Clustering - DeiT-Tiny-Average - NABirds ### Model Details Agglomerative Token Clustering (ATC), a novel hierarchical hard-merging based token reduction method. - **Developed by:** Joakim Bruslund Haurum, Sergio Escalera, Graham W. Taylor, and Thomas B. Moeslund - **Model type:** Vision Transformer - **License:** MIT - **Task:** Image Classification ### Model Card - **Backbone:** DeiT-Tiny - **Token Reduction Method:** ATC - **Linkage Function:** Average - **Reduction Ratio:** {0.25, 0.5, 0.7, 0.9} - **Reduction Stages:** 3, 6, 9 ### More Resources - **Repository:** [https://github.com/JoakimHaurum/ATC](https://github.com/JoakimHaurum/ATC) - **Paper:** [TBD](TBD) - **Project Page:** [https://vap.aau.dk/atc](https://vap.aau.dk/atc) - **HuggingFace Collection:** [https://huggingface.co/collections/joakimbh/agglomerative-token-clustering-66e94dfb313e85ec97590fe4](https://huggingface.co/collections/joakimbh/agglomerative-token-clustering-66e94dfb313e85ec97590fe4) ### Use The model files contain both standard and EMA model parameters. The version which gave the best performance is indicated with the "ema_best" boolean.