File size: 2,828 Bytes
ac1387e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd1a2f
ac1387e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd1a2f
ac1387e
 
 
 
 
 
5cd1a2f
ac1387e
 
 
 
 
5cd1a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac1387e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: chickens
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# chickens

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6675

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 13   | 0.9785          |
| No log        | 2.0   | 26   | 0.9392          |
| 1.1336        | 3.0   | 39   | 0.8768          |
| 1.1336        | 4.0   | 52   | 0.8375          |
| 0.9422        | 5.0   | 65   | 0.8428          |
| 0.9422        | 6.0   | 78   | 0.8161          |
| 0.8703        | 7.0   | 91   | 0.7947          |
| 0.8703        | 8.0   | 104  | 0.7691          |
| 0.8703        | 9.0   | 117  | 0.7788          |
| 0.8332        | 10.0  | 130  | 0.7683          |
| 0.8332        | 11.0  | 143  | 0.7432          |
| 0.7978        | 12.0  | 156  | 0.7431          |
| 0.7978        | 13.0  | 169  | 0.7229          |
| 0.7796        | 14.0  | 182  | 0.7483          |
| 0.7796        | 15.0  | 195  | 0.7237          |
| 0.7796        | 16.0  | 208  | 0.7092          |
| 0.7763        | 17.0  | 221  | 0.7036          |
| 0.7763        | 18.0  | 234  | 0.7014          |
| 0.749         | 19.0  | 247  | 0.6938          |
| 0.749         | 20.0  | 260  | 0.6885          |
| 0.742         | 21.0  | 273  | 0.6886          |
| 0.742         | 22.0  | 286  | 0.6793          |
| 0.742         | 23.0  | 299  | 0.6723          |
| 0.7268        | 24.0  | 312  | 0.6708          |
| 0.7268        | 25.0  | 325  | 0.6694          |
| 0.7258        | 26.0  | 338  | 0.6672          |
| 0.7258        | 27.0  | 351  | 0.6674          |
| 0.7074        | 28.0  | 364  | 0.6673          |
| 0.7074        | 29.0  | 377  | 0.6671          |
| 0.7168        | 30.0  | 390  | 0.6675          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.14.4
- Tokenizers 0.19.1