File size: 2,828 Bytes
ac1387e 5cd1a2f ac1387e 5cd1a2f ac1387e 5cd1a2f ac1387e 5cd1a2f ac1387e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: chickens
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# chickens
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6675
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 13 | 0.9785 |
| No log | 2.0 | 26 | 0.9392 |
| 1.1336 | 3.0 | 39 | 0.8768 |
| 1.1336 | 4.0 | 52 | 0.8375 |
| 0.9422 | 5.0 | 65 | 0.8428 |
| 0.9422 | 6.0 | 78 | 0.8161 |
| 0.8703 | 7.0 | 91 | 0.7947 |
| 0.8703 | 8.0 | 104 | 0.7691 |
| 0.8703 | 9.0 | 117 | 0.7788 |
| 0.8332 | 10.0 | 130 | 0.7683 |
| 0.8332 | 11.0 | 143 | 0.7432 |
| 0.7978 | 12.0 | 156 | 0.7431 |
| 0.7978 | 13.0 | 169 | 0.7229 |
| 0.7796 | 14.0 | 182 | 0.7483 |
| 0.7796 | 15.0 | 195 | 0.7237 |
| 0.7796 | 16.0 | 208 | 0.7092 |
| 0.7763 | 17.0 | 221 | 0.7036 |
| 0.7763 | 18.0 | 234 | 0.7014 |
| 0.749 | 19.0 | 247 | 0.6938 |
| 0.749 | 20.0 | 260 | 0.6885 |
| 0.742 | 21.0 | 273 | 0.6886 |
| 0.742 | 22.0 | 286 | 0.6793 |
| 0.742 | 23.0 | 299 | 0.6723 |
| 0.7268 | 24.0 | 312 | 0.6708 |
| 0.7268 | 25.0 | 325 | 0.6694 |
| 0.7258 | 26.0 | 338 | 0.6672 |
| 0.7258 | 27.0 | 351 | 0.6674 |
| 0.7074 | 28.0 | 364 | 0.6673 |
| 0.7074 | 29.0 | 377 | 0.6671 |
| 0.7168 | 30.0 | 390 | 0.6675 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.14.4
- Tokenizers 0.19.1
|