End of training
Browse files
README.md
CHANGED
@@ -16,7 +16,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
|
21 |
## Model description
|
22 |
|
@@ -35,49 +35,78 @@ More information needed
|
|
35 |
### Training hyperparameters
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
-
- learning_rate:
|
39 |
- train_batch_size: 8
|
40 |
- eval_batch_size: 8
|
41 |
- seed: 42
|
42 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
- lr_scheduler_type: cosine
|
44 |
-
- num_epochs:
|
45 |
-
- mixed_precision_training: Native AMP
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|
|
51 |
-
| No log | 1.0 | 13 |
|
52 |
-
| No log | 2.0 | 26 | 0.
|
53 |
-
| 1.
|
54 |
-
| 1.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2325
|
20 |
|
21 |
## Model description
|
22 |
|
|
|
35 |
### Training hyperparameters
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
- train_batch_size: 8
|
40 |
- eval_batch_size: 8
|
41 |
- seed: 42
|
42 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
- lr_scheduler_type: cosine
|
44 |
+
- num_epochs: 60
|
|
|
45 |
|
46 |
### Training results
|
47 |
|
48 |
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
|:-------------:|:-----:|:----:|:---------------:|
|
50 |
+
| No log | 1.0 | 13 | 1.1435 |
|
51 |
+
| No log | 2.0 | 26 | 0.9264 |
|
52 |
+
| 1.1679 | 3.0 | 39 | 0.8999 |
|
53 |
+
| 1.1679 | 4.0 | 52 | 0.7677 |
|
54 |
+
| 0.8695 | 5.0 | 65 | 0.6625 |
|
55 |
+
| 0.8695 | 6.0 | 78 | 0.6801 |
|
56 |
+
| 0.733 | 7.0 | 91 | 0.7046 |
|
57 |
+
| 0.733 | 8.0 | 104 | 0.6163 |
|
58 |
+
| 0.733 | 9.0 | 117 | 0.4858 |
|
59 |
+
| 0.6456 | 10.0 | 130 | 0.6188 |
|
60 |
+
| 0.6456 | 11.0 | 143 | 0.4342 |
|
61 |
+
| 0.5509 | 12.0 | 156 | 0.4561 |
|
62 |
+
| 0.5509 | 13.0 | 169 | 0.4610 |
|
63 |
+
| 0.5194 | 14.0 | 182 | 0.4872 |
|
64 |
+
| 0.5194 | 15.0 | 195 | 0.3929 |
|
65 |
+
| 0.5194 | 16.0 | 208 | 0.3746 |
|
66 |
+
| 0.4818 | 17.0 | 221 | 0.4183 |
|
67 |
+
| 0.4818 | 18.0 | 234 | 0.3301 |
|
68 |
+
| 0.4491 | 19.0 | 247 | 0.3647 |
|
69 |
+
| 0.4491 | 20.0 | 260 | 0.3881 |
|
70 |
+
| 0.4108 | 21.0 | 273 | 0.3070 |
|
71 |
+
| 0.4108 | 22.0 | 286 | 0.3409 |
|
72 |
+
| 0.4108 | 23.0 | 299 | 0.3500 |
|
73 |
+
| 0.3873 | 24.0 | 312 | 0.3143 |
|
74 |
+
| 0.3873 | 25.0 | 325 | 0.3314 |
|
75 |
+
| 0.385 | 26.0 | 338 | 0.2909 |
|
76 |
+
| 0.385 | 27.0 | 351 | 0.2874 |
|
77 |
+
| 0.3735 | 28.0 | 364 | 0.3362 |
|
78 |
+
| 0.3735 | 29.0 | 377 | 0.2828 |
|
79 |
+
| 0.3794 | 30.0 | 390 | 0.2709 |
|
80 |
+
| 0.3794 | 31.0 | 403 | 0.3035 |
|
81 |
+
| 0.3794 | 32.0 | 416 | 0.3283 |
|
82 |
+
| 0.3591 | 33.0 | 429 | 0.2983 |
|
83 |
+
| 0.3591 | 34.0 | 442 | 0.3207 |
|
84 |
+
| 0.3412 | 35.0 | 455 | 0.2782 |
|
85 |
+
| 0.3412 | 36.0 | 468 | 0.2417 |
|
86 |
+
| 0.3264 | 37.0 | 481 | 0.2604 |
|
87 |
+
| 0.3264 | 38.0 | 494 | 0.2783 |
|
88 |
+
| 0.3264 | 39.0 | 507 | 0.2813 |
|
89 |
+
| 0.3106 | 40.0 | 520 | 0.2569 |
|
90 |
+
| 0.3106 | 41.0 | 533 | 0.2442 |
|
91 |
+
| 0.3 | 42.0 | 546 | 0.2540 |
|
92 |
+
| 0.3 | 43.0 | 559 | 0.2532 |
|
93 |
+
| 0.2936 | 44.0 | 572 | 0.2696 |
|
94 |
+
| 0.2936 | 45.0 | 585 | 0.2516 |
|
95 |
+
| 0.2936 | 46.0 | 598 | 0.2359 |
|
96 |
+
| 0.283 | 47.0 | 611 | 0.2418 |
|
97 |
+
| 0.283 | 48.0 | 624 | 0.2594 |
|
98 |
+
| 0.2723 | 49.0 | 637 | 0.2364 |
|
99 |
+
| 0.2723 | 50.0 | 650 | 0.2518 |
|
100 |
+
| 0.2686 | 51.0 | 663 | 0.2533 |
|
101 |
+
| 0.2686 | 52.0 | 676 | 0.2393 |
|
102 |
+
| 0.2686 | 53.0 | 689 | 0.2391 |
|
103 |
+
| 0.2665 | 54.0 | 702 | 0.2346 |
|
104 |
+
| 0.2665 | 55.0 | 715 | 0.2319 |
|
105 |
+
| 0.2687 | 56.0 | 728 | 0.2321 |
|
106 |
+
| 0.2687 | 57.0 | 741 | 0.2333 |
|
107 |
+
| 0.266 | 58.0 | 754 | 0.2333 |
|
108 |
+
| 0.266 | 59.0 | 767 | 0.2342 |
|
109 |
+
| 0.2719 | 60.0 | 780 | 0.2325 |
|
110 |
|
111 |
|
112 |
### Framework versions
|