Upload 2 files
Browse filesworking on a multi model for network monitoring.
- Brokencircuits.py +466 -0
- multimod gui +264 -0
Brokencircuits.py
ADDED
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy as np
|
3 |
+
import faiss
|
4 |
+
|
5 |
+
class MultiModalTransformer(tf.keras.Model):
|
6 |
+
def __init__(self, hparams, knowledge_base, n_hash=1024, n_quant=256):
|
7 |
+
super(MultiModalTransformer, self).__init__()
|
8 |
+
self.hparams = hparams
|
9 |
+
self.n_hash = n_hash
|
10 |
+
self.n_quant = n_quant
|
11 |
+
|
12 |
+
# Core Transformer components
|
13 |
+
self.wte = tf.keras.layers.Embedding(hparams.n_vocab, hparams.n_embd)
|
14 |
+
self.wpe = tf.keras.layers.Embedding(hparams.n_ctx, hparams.n_embd)
|
15 |
+
self.hash_layer = tf.keras.layers.Dense(n_hash, activation='relu')
|
16 |
+
self.quant_layer = tf.keras.layers.Dense(n_quant, activation='relu')
|
17 |
+
self.h = [TransformerBlock(hparams.n_embd, hparams.n_head) for _ in range(hparams.n_layer)]
|
18 |
+
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
|
19 |
+
self.fc = tf.keras.layers.Dense(hparams.n_vocab, use_bias=False)
|
20 |
+
|
21 |
+
# Speech Recognition
|
22 |
+
self.audio_encoder = tf.keras.Sequential([
|
23 |
+
tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'),
|
24 |
+
tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'),
|
25 |
+
tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'),
|
26 |
+
tf.keras.layers.GlobalAveragePooling1D(),
|
27 |
+
tf.keras.layers.Dense(hparams.n_embd)
|
28 |
+
])
|
29 |
+
|
30 |
+
# Image Captioning
|
31 |
+
self.image_encoder = tf.keras.applications.ResNet50(include_top=False, weights='imagenet')
|
32 |
+
self.image_proj = tf.keras.layers.Dense(hparams.n_embd)
|
33 |
+
|
34 |
+
# Music Generation
|
35 |
+
self.pitch_embedding = tf.keras.layers.Embedding(128, hparams.n_embd)
|
36 |
+
self.duration_embedding = tf.keras.layers.Embedding(32, hparams.n_embd)
|
37 |
+
self.velocity_embedding = tf.keras.layers.Embedding(128, hparams.n_embd)
|
38 |
+
|
39 |
+
# Anomaly Detection
|
40 |
+
self.anomaly_threshold = tf.Variable(0.5, trainable=False)
|
41 |
+
|
42 |
+
# RAG
|
43 |
+
self.knowledge_base = knowledge_base
|
44 |
+
self.retriever = FAISSRetriever(knowledge_base)
|
45 |
+
self.query_encoder = tf.keras.Sequential([
|
46 |
+
tf.keras.layers.Dense(hparams.n_embd, activation='relu'),
|
47 |
+
tf.keras.layers.Dense(hparams.n_embd)
|
48 |
+
])
|
49 |
+
|
50 |
+
# Task-specific output layers
|
51 |
+
self.speech_output = tf.keras.layers.Dense(hparams.n_vocab)
|
52 |
+
self.caption_output = tf.keras.layers.Dense(hparams.n_vocab)
|
53 |
+
self.music_output = tf.keras.layers.Dense(288) # 128 (pitch) + 32 (duration) + 128 (velocity)
|
54 |
+
self.anomaly_output = tf.keras.layers.Dense(1, activation='sigmoid')
|
55 |
+
|
56 |
+
# Conversation history
|
57 |
+
self.conversation_history = []
|
58 |
+
|
59 |
+
# Personality traits
|
60 |
+
self.personality_traits = {
|
61 |
+
'kindness': 0.9,
|
62 |
+
'honesty': 0.9,
|
63 |
+
'resilience': 0.8,
|
64 |
+
'open_mindedness': 0.8,
|
65 |
+
'empathy': 0.9,
|
66 |
+
'reliability': 0.9,
|
67 |
+
'humility': 0.8,
|
68 |
+
'positivity': 0.9,
|
69 |
+
'courage': 0.8,
|
70 |
+
'curiosity': 0.9,
|
71 |
+
'humor': 0.8,
|
72 |
+
'self_discipline': 0.8,
|
73 |
+
'emotional_stability': 0.8,
|
74 |
+
'assertiveness': 0.8,
|
75 |
+
'creativity': 0.9
|
76 |
+
}
|
77 |
+
|
78 |
+
def call(self, inputs, task):
|
79 |
+
if task == 'speech_recognition':
|
80 |
+
x = self.audio_encoder(inputs)
|
81 |
+
elif task == 'image_captioning':
|
82 |
+
image, text = inputs
|
83 |
+
image_features = self.image_encoder(image)
|
84 |
+
image_features = self.image_proj(tf.keras.layers.GlobalAveragePooling2D()(image_features))
|
85 |
+
x = tf.concat([image_features[:, tf.newaxis, :], self.wte(text)], axis=1)
|
86 |
+
elif task == 'music_generation':
|
87 |
+
pitch, duration, velocity = inputs
|
88 |
+
x = self.pitch_embedding(pitch) + self.duration_embedding(duration) + self.velocity_embedding(velocity)
|
89 |
+
elif task in ['text_generation', 'anomaly_detection']:
|
90 |
+
x = self.wte(inputs)
|
91 |
+
else:
|
92 |
+
raise ValueError(f"Unknown task: {task}")
|
93 |
+
|
94 |
+
# RAG for text-based tasks
|
95 |
+
if task in ['text_generation', 'image_captioning']:
|
96 |
+
query = x[:, 0, :] # Use first token as query
|
97 |
+
encoded_query = self.query_encoder(query)
|
98 |
+
retrieved_docs = self.retriever.retrieve(encoded_query)
|
99 |
+
x = tf.concat([x, self.wte(retrieved_docs)], axis=1)
|
100 |
+
|
101 |
+
# Add positional embeddings
|
102 |
+
position = tf.range(0, x.shape[1], dtype=tf.int32)[tf.newaxis, :]
|
103 |
+
x = x + self.wpe(position)
|
104 |
+
|
105 |
+
# Apply core Transformer layers
|
106 |
+
x = self.hash_layer(x)
|
107 |
+
x = self.quant_layer(x)
|
108 |
+
for layer in self.h:
|
109 |
+
x, _ = layer(x)
|
110 |
+
x = self.ln_f(x)
|
111 |
+
|
112 |
+
# Task-specific outputs
|
113 |
+
if task == 'speech_recognition':
|
114 |
+
return self.speech_output(x)
|
115 |
+
elif task == 'image_captioning':
|
116 |
+
return self.caption_output(x)
|
117 |
+
elif task == 'music_generation':
|
118 |
+
return self.music_output(x)
|
119 |
+
elif task == 'anomaly_detection':
|
120 |
+
reconstruction = self.fc(x)
|
121 |
+
reconstruction_loss = tf.reduce_mean(tf.square(inputs - reconstruction), axis=-1)
|
122 |
+
anomaly_scores = tf.where(reconstruction_loss > self.anomaly_threshold, 1.0, 0.0)
|
123 |
+
return reconstruction, anomaly_scores
|
124 |
+
else: # text_generation
|
125 |
+
return self.fc(x)
|
126 |
+
|
127 |
+
def pipe(self, inputs, task):
|
128 |
+
if task == 'speech_recognition':
|
129 |
+
return self.call(inputs, task)
|
130 |
+
elif task == 'image_captioning':
|
131 |
+
return self.call(inputs, task)
|
132 |
+
elif task == 'music_generation':
|
133 |
+
return self.call(inputs, task)
|
134 |
+
elif task == 'text_generation':
|
135 |
+
return self.call(inputs, task)
|
136 |
+
elif task == 'anomaly_detection':
|
137 |
+
return self.call(inputs, task)
|
138 |
+
else:
|
139 |
+
raise ValueError(f"Unknown task: {task}")
|
140 |
+
|
141 |
+
def conversation(self, user_input):
|
142 |
+
# Add user input to conversation history
|
143 |
+
self.conversation_history.append(user_input)
|
144 |
+
|
145 |
+
# Generate response based on conversation history and personality traits
|
146 |
+
response = self.generate_response(self.conversation_history)
|
147 |
+
|
148 |
+
# Add response to conversation history
|
149 |
+
self.conversation_history.append(response)
|
150 |
+
|
151 |
+
return response
|
152 |
+
|
153 |
+
def generate_response(self, conversation_history):
|
154 |
+
# Concatenate conversation history into a single input
|
155 |
+
conversation_input = tf.concat(conversation_history, axis=0)
|
156 |
+
|
157 |
+
# Generate response using the model
|
158 |
+
response = self.pipe(conversation_input, task='text_generation')
|
159 |
+
|
160 |
+
# Apply personality traits to the response
|
161 |
+
response = self.apply_personality_traits(response)
|
162 |
+
|
163 |
+
return response
|
164 |
+
|
165 |
+
def apply_personality_traits(self, response):
|
166 |
+
# Apply personality traits to the response
|
167 |
+
for trait, value in self.personality_traits.items():
|
168 |
+
if trait == 'kindness':
|
169 |
+
response = self.add_kindness(response, value)
|
170 |
+
elif trait == 'honesty':
|
171 |
+
response = self.add_honesty(response, value)
|
172 |
+
elif trait == 'resilience':
|
173 |
+
response = self.add_resilience(response, value)
|
174 |
+
elif trait == 'open_mindedness':
|
175 |
+
response = self.add_open_mindedness(response, value)
|
176 |
+
elif trait == 'empathy':
|
177 |
+
response = self.add_empathy(response, value)
|
178 |
+
elif trait == 'reliability':
|
179 |
+
response = self.add_reliability(response, value)
|
180 |
+
elif trait == 'humility':
|
181 |
+
response = self.add_humility(response, value)
|
182 |
+
elif trait == 'positivity':
|
183 |
+
response = self.add_positivity(response, value)
|
184 |
+
elif trait == 'courage':
|
185 |
+
response = self.add_courage(response, value)
|
186 |
+
elif trait == 'curiosity':
|
187 |
+
response = self.add_curiosity(response, value)
|
188 |
+
elif trait == 'humor':
|
189 |
+
response = self.add_humor(response, value)
|
190 |
+
elif trait == 'self_discipline':
|
191 |
+
response = self.add_self_discipline(response, value)
|
192 |
+
elif trait == 'emotional_stability':
|
193 |
+
response = self.add_emotional_stability(response, value)
|
194 |
+
elif trait == 'assertiveness':
|
195 |
+
response = self.add_assertiveness(response, value)
|
196 |
+
elif trait == 'creativity':
|
197 |
+
response = self.add_creativity(response, value)
|
198 |
+
|
199 |
+
return response
|
200 |
+
|
201 |
+
def add_kindness(self, response, value):
|
202 |
+
# Add kindness to the response
|
203 |
+
if value > 0.5:
|
204 |
+
response = f"I understand your concern. {response}"
|
205 |
+
return response
|
206 |
+
|
207 |
+
def add_honesty(self, response, value):
|
208 |
+
# Add honesty to the response
|
209 |
+
if value > 0.5:
|
210 |
+
response = f"To be honest, {response}"
|
211 |
+
return response
|
212 |
+
|
213 |
+
def add_resilience(self, response, value):
|
214 |
+
# Add resilience to the response
|
215 |
+
if value > 0.5:
|
216 |
+
response = f"Let's keep trying. {response}"
|
217 |
+
return response
|
218 |
+
|
219 |
+
def add_open_mindedness(self, response, value):
|
220 |
+
# Add open-mindedness to the response
|
221 |
+
if value > 0.5:
|
222 |
+
response = f"That's an interesting perspective. {response}"
|
223 |
+
return response
|
224 |
+
|
225 |
+
def add_empathy(self, response, value):
|
226 |
+
# Add empathy to the response
|
227 |
+
if value > 0.5:
|
228 |
+
response = f"I can see how you feel. {response}"
|
229 |
+
return response
|
230 |
+
|
231 |
+
def add_reliability(self, response, value):
|
232 |
+
# Add reliability to the response
|
233 |
+
if value > 0.5:
|
234 |
+
response = f"You can count on me. {response}"
|
235 |
+
return response
|
236 |
+
|
237 |
+
def add_humility(self, response, value):
|
238 |
+
# Add humility to the response
|
239 |
+
if value > 0.5:
|
240 |
+
response = f"I'm still learning. {response}"
|
241 |
+
return response
|
242 |
+
|
243 |
+
def add_positivity(self, response, value):
|
244 |
+
# Add positivity to the response
|
245 |
+
if value > 0.5:
|
246 |
+
response = f"Let's stay positive. {response}"
|
247 |
+
return response
|
248 |
+
|
249 |
+
def add_courage(self, response, value):
|
250 |
+
# Add courage to the response
|
251 |
+
if value > 0.5:
|
252 |
+
response = f"Let's face this together. {response}"
|
253 |
+
return response
|
254 |
+
|
255 |
+
def add_curiosity(self, response, value):
|
256 |
+
# Add curiosity to the response
|
257 |
+
if value > 0.5:
|
258 |
+
response = f"That's fascinating. {response}"
|
259 |
+
return response
|
260 |
+
|
261 |
+
def add_humor(self, response, value):
|
262 |
+
# Add humor to the response
|
263 |
+
if value > 0.5:
|
264 |
+
response = f"On a lighter note, {response}"
|
265 |
+
return response
|
266 |
+
|
267 |
+
def add_self_discipline(self, response, value):
|
268 |
+
# Add self-discipline to the response
|
269 |
+
if value > 0.5:
|
270 |
+
response = f"Let's stay focused. {response}"
|
271 |
+
return response
|
272 |
+
|
273 |
+
def add_emotional_stability(self, response, value):
|
274 |
+
# Add emotional stability to the response
|
275 |
+
if value > 0.5:
|
276 |
+
response = f"Let's stay calm. {response}"
|
277 |
+
return response
|
278 |
+
|
279 |
+
def add_assertiveness(self, response, value):
|
280 |
+
# Add assertiveness to the response
|
281 |
+
if value > 0.5:
|
282 |
+
response = f"I firmly believe that {response}"
|
283 |
+
return response
|
284 |
+
|
285 |
+
def add_creativity(self, response, value):
|
286 |
+
# Add creativity to the response
|
287 |
+
if value > 0.5:
|
288 |
+
response = f"Let's think outside the box. {response}"
|
289 |
+
return response
|
290 |
+
|
291 |
+
def fine_tune_personality(self, trait, value):
|
292 |
+
# Fine-tune the personality trait
|
293 |
+
if trait in self.personality_traits:
|
294 |
+
self.personality_traits[trait] = value
|
295 |
+
else:
|
296 |
+
raise ValueError(f"Unknown trait: {trait}")
|
297 |
+
|
298 |
+
def safe_word_format(self, user_input):
|
299 |
+
# Safe word format for user control
|
300 |
+
if user_input.lower() == "stop":
|
301 |
+
self.conversation_history = []
|
302 |
+
return "Conversation stopped. You can start a new conversation."
|
303 |
+
elif user_input.lower() == "reset":
|
304 |
+
self.conversation_history = []
|
305 |
+
return "Conversation reset. Let's start fresh."
|
306 |
+
else:
|
307 |
+
return None
|
308 |
+
|
309 |
+
class TransformerBlock(tf.keras.layers.Layer):
|
310 |
+
def __init__(self, n_embd, n_head):
|
311 |
+
super(TransformerBlock, self).__init__()
|
312 |
+
self.attn = MultiHeadAttention(n_embd, n_head)
|
313 |
+
self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
|
314 |
+
self.mlp = tf.keras.Sequential([
|
315 |
+
tf.keras.layers.Dense(4 * n_embd, activation=gelu),
|
316 |
+
tf.keras.layers.Dense(n_embd)
|
317 |
+
])
|
318 |
+
self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
|
319 |
+
|
320 |
+
def call(self, x, past=None):
|
321 |
+
a, present = self.attn(self.ln_1(x), past=past)
|
322 |
+
x = x + a
|
323 |
+
m = self.mlp(self.ln_2(x))
|
324 |
+
x = x + m
|
325 |
+
return x, present
|
326 |
+
|
327 |
+
class MultiHeadAttention(tf.keras.layers.Layer):
|
328 |
+
def __init__(self, n_embd, n_head):
|
329 |
+
super(MultiHeadAttention, self).__init__()
|
330 |
+
self.n_embd = n_embd
|
331 |
+
self.n_head = n_head
|
332 |
+
self.c_attn = tf.keras.layers.Dense(3 * n_embd)
|
333 |
+
self.c_proj = tf.keras.layers.Dense(n_embd)
|
334 |
+
|
335 |
+
def split_heads(self, x):
|
336 |
+
return tf.transpose(tf.reshape(x, (*x.shape[:-1], self.n_head, -1)), [0, 2, 1, 3])
|
337 |
+
|
338 |
+
def merge_heads(self, x):
|
339 |
+
return tf.reshape(tf.transpose(x, [0, 2, 1, 3]), (*x.shape[:-3], -1))
|
340 |
+
|
341 |
+
def call(self, x, past=None):
|
342 |
+
c = self.c_attn(x)
|
343 |
+
q, k, v = tf.split(c, 3, axis=-1)
|
344 |
+
q, k, v = map(self.split_heads, [q, k, v])
|
345 |
+
|
346 |
+
if past is not None:
|
347 |
+
pk, pv = past
|
348 |
+
k = tf.concat([pk, k], axis=-2)
|
349 |
+
v = tf.concat([pv, v], axis=-2)
|
350 |
+
|
351 |
+
present = tf.stack([k, v], axis=1)
|
352 |
+
a = tf.matmul(q, k, transpose_b=True) / tf.math.sqrt(tf.cast(v.shape[-1], tf.float32))
|
353 |
+
a = tf.nn.softmax(a)
|
354 |
+
a = tf.matmul(a, v)
|
355 |
+
a = self.merge_heads(a)
|
356 |
+
a = self.c_proj(a)
|
357 |
+
return a, present
|
358 |
+
|
359 |
+
class FAISSRetriever:
|
360 |
+
def __init__(self, knowledge_base, dim=768, num_results=5):
|
361 |
+
self.index = faiss.IndexFlatL2(dim)
|
362 |
+
self.knowledge_base = knowledge_base
|
363 |
+
self.num_results = num_results
|
364 |
+
|
365 |
+
vectors = [doc['vector'] for doc in knowledge_base]
|
366 |
+
self.index.add(np.array(vectors))
|
367 |
+
|
368 |
+
def retrieve(self, query_vector):
|
369 |
+
distances, indices = self.index.search(query_vector.numpy(), self.num_results)
|
370 |
+
retrieved_docs = [self.knowledge_base[i]['text'] for i in indices[0]]
|
371 |
+
return tf.constant(retrieved_docs)
|
372 |
+
|
373 |
+
def gelu(x):
|
374 |
+
return 0.5 * x * (1 + tf.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))
|
375 |
+
|
376 |
+
# Custom loss function
|
377 |
+
def custom_loss(y_true, y_pred, model, task):
|
378 |
+
if task == 'anomaly_detection':
|
379 |
+
mse = tf.keras.losses.MeanSquaredError()
|
380 |
+
return mse(y_true, y_pred)
|
381 |
+
else:
|
382 |
+
ce_loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=True)
|
383 |
+
reg_loss = tf.reduce_sum([tf.nn.l2_loss(w) for w in model.trainable_weights])
|
384 |
+
return ce_loss + 0.01 * reg_loss
|
385 |
+
|
386 |
+
# Training function
|
387 |
+
@tf.function
|
388 |
+
def train_step(model, optimizer, inputs, targets, task):
|
389 |
+
with tf.GradientTape() as tape:
|
390 |
+
predictions = model(inputs, task)
|
391 |
+
loss = custom_loss(targets, predictions, model, task)
|
392 |
+
gradients = tape.gradient(loss, model.trainable_variables)
|
393 |
+
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
|
394 |
+
return loss
|
395 |
+
|
396 |
+
# Hyperparameters
|
397 |
+
class HParams:
|
398 |
+
def __init__(self, n_vocab, n_ctx, n_embd, n_head, n_layer):
|
399 |
+
self.n_vocab = n_vocab
|
400 |
+
self.n_ctx = n_ctx
|
401 |
+
self.n_embd = n_embd
|
402 |
+
self.n_head = n_head
|
403 |
+
self.n_layer = n_layer
|
404 |
+
|
405 |
+
hparams = HParams(
|
406 |
+
n_vocab=50000,
|
407 |
+
n_ctx=1024,
|
408 |
+
n_embd=768,
|
409 |
+
n_head=12,
|
410 |
+
n_layer=12
|
411 |
+
)
|
412 |
+
|
413 |
+
# Initialize knowledge base (for demonstration)
|
414 |
+
knowledge_base = [
|
415 |
+
{'text': 'Example knowledge 1', 'vector': np.random.rand(768)},
|
416 |
+
{'text': 'Example knowledge 2', 'vector': np.random.rand(768)},
|
417 |
+
# ... more entries ...
|
418 |
+
]
|
419 |
+
|
420 |
+
# Initialize model
|
421 |
+
model = MultiModalTransformer(hparams, knowledge_base)
|
422 |
+
|
423 |
+
# Initialize optimizer
|
424 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
|
425 |
+
|
426 |
+
# Training loop (pseudo-code)
|
427 |
+
num_epochs = 10
|
428 |
+
for epoch in range(num_epochs):
|
429 |
+
for batch in dataset:
|
430 |
+
inputs, targets, task = batch
|
431 |
+
loss = train_step(model, optimizer, inputs, targets, task)
|
432 |
+
print(f"Epoch {epoch + 1}, Loss: {loss.numpy()}")
|
433 |
+
|
434 |
+
# Example usage
|
435 |
+
speech_input = tf.random.normal((1, 16000, 1)) # 1 second of audio at 16kHz
|
436 |
+
speech_output = model(speech_input, task='speech_recognition')
|
437 |
+
|
438 |
+
image_input = tf.random.normal((1, 224, 224, 3))
|
439 |
+
text_input = tf.random.uniform((1, 10), maxval=50000, dtype=tf.int32)
|
440 |
+
caption_output = model([image_input, text_input], task='image_captioning')
|
441 |
+
|
442 |
+
music_input = [
|
443 |
+
tf.random.uniform((1, 100), maxval=128, dtype=tf.int32), # pitch
|
444 |
+
tf.random.uniform((1, 100), maxval=32, dtype=tf.int32), # duration
|
445 |
+
tf.random.uniform((1, 100), maxval=128, dtype=tf.int32) # velocity
|
446 |
+
]
|
447 |
+
music_output = model(music_input, task='music_generation')
|
448 |
+
|
449 |
+
text_input = tf.random.uniform((1, 50), maxval=50000, dtype=tf.int32)
|
450 |
+
text_output = model(text_input, task='text_generation')
|
451 |
+
|
452 |
+
anomaly_input = tf.random.normal((1, 100, 768))
|
453 |
+
reconstructed, anomalies = model(anomaly_input, task='anomaly_detection')
|
454 |
+
|
455 |
+
# Example conversation
|
456 |
+
user_input = "Hello, how are you?"
|
457 |
+
response = model.conversation(user_input)
|
458 |
+
print(response)
|
459 |
+
|
460 |
+
# Fine-tune personality trait
|
461 |
+
model.fine_tune_personality('kindness', 0.95)
|
462 |
+
|
463 |
+
# Safe word control
|
464 |
+
user_input = "stop"
|
465 |
+
response = model.safe_word_format(user_input)
|
466 |
+
print(response)
|
multimod gui
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from PyQt5.QtWidgets import (QApplication, QWidget, QVBoxLayout, QHBoxLayout, QTextEdit, QPushButton,
|
5 |
+
QLineEdit, QLabel, QFileDialog, QTabWidget, QProgressBar)
|
6 |
+
from PyQt5.QtCore import Qt, QThread, pyqtSignal
|
7 |
+
from PyQt5.QtGui import QPixmap
|
8 |
+
import sounddevice as sd
|
9 |
+
import soundfile as sf
|
10 |
+
import librosa
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
from multimodal_transformer import MultiModalTransformer, HParams
|
14 |
+
|
15 |
+
class WorkerThread(QThread):
|
16 |
+
finished = pyqtSignal(object)
|
17 |
+
|
18 |
+
def __init__(self, func, *args, **kwargs):
|
19 |
+
super().__init__()
|
20 |
+
self.func = func
|
21 |
+
self.args = args
|
22 |
+
self.kwargs = kwargs
|
23 |
+
|
24 |
+
def run(self):
|
25 |
+
result = self.func(*self.args, **self.kwargs)
|
26 |
+
self.finished.emit(result)
|
27 |
+
|
28 |
+
class EnhancedChatGUI(QWidget):
|
29 |
+
def __init__(self, model):
|
30 |
+
super().__init__()
|
31 |
+
self.model = model
|
32 |
+
self.initUI()
|
33 |
+
|
34 |
+
def initUI(self):
|
35 |
+
self.setWindowTitle('MultiModal Transformer Interface')
|
36 |
+
self.setGeometry(100, 100, 800, 600)
|
37 |
+
|
38 |
+
layout = QVBoxLayout()
|
39 |
+
|
40 |
+
# Create tabs
|
41 |
+
self.tabs = QTabWidget()
|
42 |
+
self.tabs.addTab(self.createChatTab(), "Chat")
|
43 |
+
self.tabs.addTab(self.createSpeechTab(), "Speech Recognition")
|
44 |
+
self.tabs.addTab(self.createImageTab(), "Image Captioning")
|
45 |
+
self.tabs.addTab(self.createMusicTab(), "Music Generation")
|
46 |
+
self.tabs.addTab(self.createAnomalyTab(), "Anomaly Detection")
|
47 |
+
|
48 |
+
layout.addWidget(self.tabs)
|
49 |
+
|
50 |
+
self.setLayout(layout)
|
51 |
+
|
52 |
+
def createChatTab(self):
|
53 |
+
widget = QWidget()
|
54 |
+
layout = QVBoxLayout()
|
55 |
+
|
56 |
+
self.chatDisplay = QTextEdit()
|
57 |
+
self.chatDisplay.setReadOnly(True)
|
58 |
+
layout.addWidget(self.chatDisplay)
|
59 |
+
|
60 |
+
inputLayout = QHBoxLayout()
|
61 |
+
self.inputField = QLineEdit()
|
62 |
+
self.inputField.returnPressed.connect(self.sendMessage)
|
63 |
+
inputLayout.addWidget(self.inputField)
|
64 |
+
|
65 |
+
sendButton = QPushButton('Send')
|
66 |
+
sendButton.clicked.connect(self.sendMessage)
|
67 |
+
inputLayout.addWidget(sendButton)
|
68 |
+
|
69 |
+
layout.addLayout(inputLayout)
|
70 |
+
|
71 |
+
traitLayout = QHBoxLayout()
|
72 |
+
self.traitLabel = QLabel('Adjust trait:')
|
73 |
+
self.traitInput = QLineEdit()
|
74 |
+
self.traitValue = QLineEdit()
|
75 |
+
self.traitButton = QPushButton('Update')
|
76 |
+
self.traitButton.clicked.connect(self.updateTrait)
|
77 |
+
|
78 |
+
traitLayout.addWidget(self.traitLabel)
|
79 |
+
traitLayout.addWidget(self.traitInput)
|
80 |
+
traitLayout.addWidget(self.traitValue)
|
81 |
+
traitLayout.addWidget(self.traitButton)
|
82 |
+
|
83 |
+
layout.addLayout(traitLayout)
|
84 |
+
|
85 |
+
widget.setLayout(layout)
|
86 |
+
return widget
|
87 |
+
|
88 |
+
def createSpeechTab(self):
|
89 |
+
widget = QWidget()
|
90 |
+
layout = QVBoxLayout()
|
91 |
+
|
92 |
+
self.recordButton = QPushButton('Record Audio (5 seconds)')
|
93 |
+
self.recordButton.clicked.connect(self.recordAudio)
|
94 |
+
layout.addWidget(self.recordButton)
|
95 |
+
|
96 |
+
self.speechOutput = QTextEdit()
|
97 |
+
self.speechOutput.setReadOnly(True)
|
98 |
+
layout.addWidget(self.speechOutput)
|
99 |
+
|
100 |
+
widget.setLayout(layout)
|
101 |
+
return widget
|
102 |
+
|
103 |
+
def createImageTab(self):
|
104 |
+
widget = QWidget()
|
105 |
+
layout = QVBoxLayout()
|
106 |
+
|
107 |
+
self.imageButton = QPushButton('Select Image')
|
108 |
+
self.imageButton.clicked.connect(self.selectImage)
|
109 |
+
layout.addWidget(self.imageButton)
|
110 |
+
|
111 |
+
self.imageLabel = QLabel()
|
112 |
+
layout.addWidget(self.imageLabel)
|
113 |
+
|
114 |
+
self.captionOutput = QTextEdit()
|
115 |
+
self.captionOutput.setReadOnly(True)
|
116 |
+
layout.addWidget(self.captionOutput)
|
117 |
+
|
118 |
+
widget.setLayout(layout)
|
119 |
+
return widget
|
120 |
+
|
121 |
+
def createMusicTab(self):
|
122 |
+
widget = QWidget()
|
123 |
+
layout = QVBoxLayout()
|
124 |
+
|
125 |
+
self.generateMusicButton = QPushButton('Generate Music')
|
126 |
+
self.generateMusicButton.clicked.connect(self.generateMusic)
|
127 |
+
layout.addWidget(self.generateMusicButton)
|
128 |
+
|
129 |
+
self.musicOutput = QTextEdit()
|
130 |
+
self.musicOutput.setReadOnly(True)
|
131 |
+
layout.addWidget(self.musicOutput)
|
132 |
+
|
133 |
+
widget.setLayout(layout)
|
134 |
+
return widget
|
135 |
+
|
136 |
+
def createAnomalyTab(self):
|
137 |
+
widget = QWidget()
|
138 |
+
layout = QVBoxLayout()
|
139 |
+
|
140 |
+
self.anomalyButton = QPushButton('Detect Anomalies')
|
141 |
+
self.anomalyButton.clicked.connect(self.detectAnomalies)
|
142 |
+
layout.addWidget(self.anomalyButton)
|
143 |
+
|
144 |
+
self.anomalyOutput = QTextEdit()
|
145 |
+
self.anomalyOutput.setReadOnly(True)
|
146 |
+
layout.addWidget(self.anomalyOutput)
|
147 |
+
|
148 |
+
widget.setLayout(layout)
|
149 |
+
return widget
|
150 |
+
|
151 |
+
def sendMessage(self):
|
152 |
+
userInput = self.inputField.text()
|
153 |
+
self.inputField.clear()
|
154 |
+
|
155 |
+
safeWordResponse = self.model.safe_word_format(userInput)
|
156 |
+
if safeWordResponse:
|
157 |
+
self.displayMessage("User: " + userInput)
|
158 |
+
self.displayMessage("AI: " + safeWordResponse)
|
159 |
+
return
|
160 |
+
|
161 |
+
self.displayMessage("User: " + userInput)
|
162 |
+
response = self.model.conversation(userInput)
|
163 |
+
self.displayMessage("AI: " + response)
|
164 |
+
|
165 |
+
def displayMessage(self, message):
|
166 |
+
self.chatDisplay.append(message)
|
167 |
+
|
168 |
+
def updateTrait(self):
|
169 |
+
trait = self.traitInput.text()
|
170 |
+
value = float(self.traitValue.text())
|
171 |
+
try:
|
172 |
+
self.model.fine_tune_personality(trait, value)
|
173 |
+
self.displayMessage(f"System: Updated {trait} to {value}")
|
174 |
+
except ValueError as e:
|
175 |
+
self.displayMessage(f"System Error: {str(e)}")
|
176 |
+
|
177 |
+
def recordAudio(self):
|
178 |
+
duration = 5 # seconds
|
179 |
+
fs = 16000 # Sample rate
|
180 |
+
recording = sd.rec(int(duration * fs), samplerate=fs, channels=1)
|
181 |
+
sd.wait()
|
182 |
+
sf.write('temp_recording.wav', recording, fs)
|
183 |
+
self.processSpeech('temp_recording.wav')
|
184 |
+
|
185 |
+
def processSpeech(self, file_path):
|
186 |
+
audio, _ = librosa.load(file_path, sr=16000)
|
187 |
+
audio_tensor = tf.convert_to_tensor(audio, dtype=tf.float32)
|
188 |
+
audio_tensor = tf.expand_dims(audio_tensor, axis=0)
|
189 |
+
|
190 |
+
worker = WorkerThread(self.model.pipe, audio_tensor, 'speech_recognition')
|
191 |
+
worker.finished.connect(self.onSpeechRecognitionFinished)
|
192 |
+
worker.start()
|
193 |
+
|
194 |
+
def onSpeechRecognitionFinished(self, result):
|
195 |
+
self.speechOutput.setText(f"Recognized Speech: {result}")
|
196 |
+
|
197 |
+
def selectImage(self):
|
198 |
+
file_path, _ = QFileDialog.getOpenFileName(self, "Select Image", "", "Image Files (*.png *.jpg *.bmp)")
|
199 |
+
if file_path:
|
200 |
+
pixmap = QPixmap(file_path)
|
201 |
+
self.imageLabel.setPixmap(pixmap.scaled(300, 300, Qt.KeepAspectRatio))
|
202 |
+
self.processImage(file_path)
|
203 |
+
|
204 |
+
def processImage(self, file_path):
|
205 |
+
image = Image.open(file_path)
|
206 |
+
image = image.resize((224, 224))
|
207 |
+
image_array = np.array(image) / 255.0
|
208 |
+
image_tensor = tf.convert_to_tensor(image_array, dtype=tf.float32)
|
209 |
+
image_tensor = tf.expand_dims(image_tensor, axis=0)
|
210 |
+
|
211 |
+
worker = WorkerThread(self.model.pipe, [image_tensor, tf.zeros((1, 1), dtype=tf.int32)], 'image_captioning')
|
212 |
+
worker.finished.connect(self.onImageCaptioningFinished)
|
213 |
+
worker.start()
|
214 |
+
|
215 |
+
def onImageCaptioningFinished(self, result):
|
216 |
+
self.captionOutput.setText(f"Generated Caption: {result}")
|
217 |
+
|
218 |
+
def generateMusic(self):
|
219 |
+
# Generate random music input (you might want to create a more meaningful input)
|
220 |
+
pitch = tf.random.uniform((1, 100), maxval=128, dtype=tf.int32)
|
221 |
+
duration = tf.random.uniform((1, 100), maxval=32, dtype=tf.int32)
|
222 |
+
velocity = tf.random.uniform((1, 100), maxval=128, dtype=tf.int32)
|
223 |
+
|
224 |
+
worker = WorkerThread(self.model.pipe, [pitch, duration, velocity], 'music_generation')
|
225 |
+
worker.finished.connect(self.onMusicGenerationFinished)
|
226 |
+
worker.start()
|
227 |
+
|
228 |
+
def onMusicGenerationFinished(self, result):
|
229 |
+
self.musicOutput.setText(f"Generated Music: {result}")
|
230 |
+
|
231 |
+
def detectAnomalies(self):
|
232 |
+
# Generate random input for anomaly detection
|
233 |
+
anomaly_input = tf.random.normal((1, 100, 768))
|
234 |
+
|
235 |
+
worker = WorkerThread(self.model.pipe, anomaly_input, 'anomaly_detection')
|
236 |
+
worker.finished.connect(self.onAnomalyDetectionFinished)
|
237 |
+
worker.start()
|
238 |
+
|
239 |
+
def onAnomalyDetectionFinished(self, result):
|
240 |
+
reconstructed, anomalies = result
|
241 |
+
self.anomalyOutput.setText(f"Detected Anomalies: {anomalies}")
|
242 |
+
|
243 |
+
def main():
|
244 |
+
# Initialize your model here
|
245 |
+
hparams = HParams(
|
246 |
+
n_vocab=50000,
|
247 |
+
n_ctx=1024,
|
248 |
+
n_embd=768,
|
249 |
+
n_head=12,
|
250 |
+
n_layer=12
|
251 |
+
)
|
252 |
+
knowledge_base = [
|
253 |
+
{'text': 'Example knowledge 1', 'vector': np.random.rand(768)},
|
254 |
+
{'text': 'Example knowledge 2', 'vector': np.random.rand(768)},
|
255 |
+
]
|
256 |
+
model = MultiModalTransformer(hparams, knowledge_base)
|
257 |
+
|
258 |
+
app = QApplication(sys.argv)
|
259 |
+
gui = EnhancedChatGUI(model)
|
260 |
+
gui.show()
|
261 |
+
sys.exit(app.exec_())
|
262 |
+
|
263 |
+
if __name__ == '__main__':
|
264 |
+
main()
|