joebruce1313 commited on
Commit
fda421b
·
verified ·
1 Parent(s): e158e03

Upload 2 files

Browse files

working on a multi model for network monitoring.

Files changed (2) hide show
  1. Brokencircuits.py +466 -0
  2. multimod gui +264 -0
Brokencircuits.py ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import numpy as np
3
+ import faiss
4
+
5
+ class MultiModalTransformer(tf.keras.Model):
6
+ def __init__(self, hparams, knowledge_base, n_hash=1024, n_quant=256):
7
+ super(MultiModalTransformer, self).__init__()
8
+ self.hparams = hparams
9
+ self.n_hash = n_hash
10
+ self.n_quant = n_quant
11
+
12
+ # Core Transformer components
13
+ self.wte = tf.keras.layers.Embedding(hparams.n_vocab, hparams.n_embd)
14
+ self.wpe = tf.keras.layers.Embedding(hparams.n_ctx, hparams.n_embd)
15
+ self.hash_layer = tf.keras.layers.Dense(n_hash, activation='relu')
16
+ self.quant_layer = tf.keras.layers.Dense(n_quant, activation='relu')
17
+ self.h = [TransformerBlock(hparams.n_embd, hparams.n_head) for _ in range(hparams.n_layer)]
18
+ self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
19
+ self.fc = tf.keras.layers.Dense(hparams.n_vocab, use_bias=False)
20
+
21
+ # Speech Recognition
22
+ self.audio_encoder = tf.keras.Sequential([
23
+ tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'),
24
+ tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'),
25
+ tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'),
26
+ tf.keras.layers.GlobalAveragePooling1D(),
27
+ tf.keras.layers.Dense(hparams.n_embd)
28
+ ])
29
+
30
+ # Image Captioning
31
+ self.image_encoder = tf.keras.applications.ResNet50(include_top=False, weights='imagenet')
32
+ self.image_proj = tf.keras.layers.Dense(hparams.n_embd)
33
+
34
+ # Music Generation
35
+ self.pitch_embedding = tf.keras.layers.Embedding(128, hparams.n_embd)
36
+ self.duration_embedding = tf.keras.layers.Embedding(32, hparams.n_embd)
37
+ self.velocity_embedding = tf.keras.layers.Embedding(128, hparams.n_embd)
38
+
39
+ # Anomaly Detection
40
+ self.anomaly_threshold = tf.Variable(0.5, trainable=False)
41
+
42
+ # RAG
43
+ self.knowledge_base = knowledge_base
44
+ self.retriever = FAISSRetriever(knowledge_base)
45
+ self.query_encoder = tf.keras.Sequential([
46
+ tf.keras.layers.Dense(hparams.n_embd, activation='relu'),
47
+ tf.keras.layers.Dense(hparams.n_embd)
48
+ ])
49
+
50
+ # Task-specific output layers
51
+ self.speech_output = tf.keras.layers.Dense(hparams.n_vocab)
52
+ self.caption_output = tf.keras.layers.Dense(hparams.n_vocab)
53
+ self.music_output = tf.keras.layers.Dense(288) # 128 (pitch) + 32 (duration) + 128 (velocity)
54
+ self.anomaly_output = tf.keras.layers.Dense(1, activation='sigmoid')
55
+
56
+ # Conversation history
57
+ self.conversation_history = []
58
+
59
+ # Personality traits
60
+ self.personality_traits = {
61
+ 'kindness': 0.9,
62
+ 'honesty': 0.9,
63
+ 'resilience': 0.8,
64
+ 'open_mindedness': 0.8,
65
+ 'empathy': 0.9,
66
+ 'reliability': 0.9,
67
+ 'humility': 0.8,
68
+ 'positivity': 0.9,
69
+ 'courage': 0.8,
70
+ 'curiosity': 0.9,
71
+ 'humor': 0.8,
72
+ 'self_discipline': 0.8,
73
+ 'emotional_stability': 0.8,
74
+ 'assertiveness': 0.8,
75
+ 'creativity': 0.9
76
+ }
77
+
78
+ def call(self, inputs, task):
79
+ if task == 'speech_recognition':
80
+ x = self.audio_encoder(inputs)
81
+ elif task == 'image_captioning':
82
+ image, text = inputs
83
+ image_features = self.image_encoder(image)
84
+ image_features = self.image_proj(tf.keras.layers.GlobalAveragePooling2D()(image_features))
85
+ x = tf.concat([image_features[:, tf.newaxis, :], self.wte(text)], axis=1)
86
+ elif task == 'music_generation':
87
+ pitch, duration, velocity = inputs
88
+ x = self.pitch_embedding(pitch) + self.duration_embedding(duration) + self.velocity_embedding(velocity)
89
+ elif task in ['text_generation', 'anomaly_detection']:
90
+ x = self.wte(inputs)
91
+ else:
92
+ raise ValueError(f"Unknown task: {task}")
93
+
94
+ # RAG for text-based tasks
95
+ if task in ['text_generation', 'image_captioning']:
96
+ query = x[:, 0, :] # Use first token as query
97
+ encoded_query = self.query_encoder(query)
98
+ retrieved_docs = self.retriever.retrieve(encoded_query)
99
+ x = tf.concat([x, self.wte(retrieved_docs)], axis=1)
100
+
101
+ # Add positional embeddings
102
+ position = tf.range(0, x.shape[1], dtype=tf.int32)[tf.newaxis, :]
103
+ x = x + self.wpe(position)
104
+
105
+ # Apply core Transformer layers
106
+ x = self.hash_layer(x)
107
+ x = self.quant_layer(x)
108
+ for layer in self.h:
109
+ x, _ = layer(x)
110
+ x = self.ln_f(x)
111
+
112
+ # Task-specific outputs
113
+ if task == 'speech_recognition':
114
+ return self.speech_output(x)
115
+ elif task == 'image_captioning':
116
+ return self.caption_output(x)
117
+ elif task == 'music_generation':
118
+ return self.music_output(x)
119
+ elif task == 'anomaly_detection':
120
+ reconstruction = self.fc(x)
121
+ reconstruction_loss = tf.reduce_mean(tf.square(inputs - reconstruction), axis=-1)
122
+ anomaly_scores = tf.where(reconstruction_loss > self.anomaly_threshold, 1.0, 0.0)
123
+ return reconstruction, anomaly_scores
124
+ else: # text_generation
125
+ return self.fc(x)
126
+
127
+ def pipe(self, inputs, task):
128
+ if task == 'speech_recognition':
129
+ return self.call(inputs, task)
130
+ elif task == 'image_captioning':
131
+ return self.call(inputs, task)
132
+ elif task == 'music_generation':
133
+ return self.call(inputs, task)
134
+ elif task == 'text_generation':
135
+ return self.call(inputs, task)
136
+ elif task == 'anomaly_detection':
137
+ return self.call(inputs, task)
138
+ else:
139
+ raise ValueError(f"Unknown task: {task}")
140
+
141
+ def conversation(self, user_input):
142
+ # Add user input to conversation history
143
+ self.conversation_history.append(user_input)
144
+
145
+ # Generate response based on conversation history and personality traits
146
+ response = self.generate_response(self.conversation_history)
147
+
148
+ # Add response to conversation history
149
+ self.conversation_history.append(response)
150
+
151
+ return response
152
+
153
+ def generate_response(self, conversation_history):
154
+ # Concatenate conversation history into a single input
155
+ conversation_input = tf.concat(conversation_history, axis=0)
156
+
157
+ # Generate response using the model
158
+ response = self.pipe(conversation_input, task='text_generation')
159
+
160
+ # Apply personality traits to the response
161
+ response = self.apply_personality_traits(response)
162
+
163
+ return response
164
+
165
+ def apply_personality_traits(self, response):
166
+ # Apply personality traits to the response
167
+ for trait, value in self.personality_traits.items():
168
+ if trait == 'kindness':
169
+ response = self.add_kindness(response, value)
170
+ elif trait == 'honesty':
171
+ response = self.add_honesty(response, value)
172
+ elif trait == 'resilience':
173
+ response = self.add_resilience(response, value)
174
+ elif trait == 'open_mindedness':
175
+ response = self.add_open_mindedness(response, value)
176
+ elif trait == 'empathy':
177
+ response = self.add_empathy(response, value)
178
+ elif trait == 'reliability':
179
+ response = self.add_reliability(response, value)
180
+ elif trait == 'humility':
181
+ response = self.add_humility(response, value)
182
+ elif trait == 'positivity':
183
+ response = self.add_positivity(response, value)
184
+ elif trait == 'courage':
185
+ response = self.add_courage(response, value)
186
+ elif trait == 'curiosity':
187
+ response = self.add_curiosity(response, value)
188
+ elif trait == 'humor':
189
+ response = self.add_humor(response, value)
190
+ elif trait == 'self_discipline':
191
+ response = self.add_self_discipline(response, value)
192
+ elif trait == 'emotional_stability':
193
+ response = self.add_emotional_stability(response, value)
194
+ elif trait == 'assertiveness':
195
+ response = self.add_assertiveness(response, value)
196
+ elif trait == 'creativity':
197
+ response = self.add_creativity(response, value)
198
+
199
+ return response
200
+
201
+ def add_kindness(self, response, value):
202
+ # Add kindness to the response
203
+ if value > 0.5:
204
+ response = f"I understand your concern. {response}"
205
+ return response
206
+
207
+ def add_honesty(self, response, value):
208
+ # Add honesty to the response
209
+ if value > 0.5:
210
+ response = f"To be honest, {response}"
211
+ return response
212
+
213
+ def add_resilience(self, response, value):
214
+ # Add resilience to the response
215
+ if value > 0.5:
216
+ response = f"Let's keep trying. {response}"
217
+ return response
218
+
219
+ def add_open_mindedness(self, response, value):
220
+ # Add open-mindedness to the response
221
+ if value > 0.5:
222
+ response = f"That's an interesting perspective. {response}"
223
+ return response
224
+
225
+ def add_empathy(self, response, value):
226
+ # Add empathy to the response
227
+ if value > 0.5:
228
+ response = f"I can see how you feel. {response}"
229
+ return response
230
+
231
+ def add_reliability(self, response, value):
232
+ # Add reliability to the response
233
+ if value > 0.5:
234
+ response = f"You can count on me. {response}"
235
+ return response
236
+
237
+ def add_humility(self, response, value):
238
+ # Add humility to the response
239
+ if value > 0.5:
240
+ response = f"I'm still learning. {response}"
241
+ return response
242
+
243
+ def add_positivity(self, response, value):
244
+ # Add positivity to the response
245
+ if value > 0.5:
246
+ response = f"Let's stay positive. {response}"
247
+ return response
248
+
249
+ def add_courage(self, response, value):
250
+ # Add courage to the response
251
+ if value > 0.5:
252
+ response = f"Let's face this together. {response}"
253
+ return response
254
+
255
+ def add_curiosity(self, response, value):
256
+ # Add curiosity to the response
257
+ if value > 0.5:
258
+ response = f"That's fascinating. {response}"
259
+ return response
260
+
261
+ def add_humor(self, response, value):
262
+ # Add humor to the response
263
+ if value > 0.5:
264
+ response = f"On a lighter note, {response}"
265
+ return response
266
+
267
+ def add_self_discipline(self, response, value):
268
+ # Add self-discipline to the response
269
+ if value > 0.5:
270
+ response = f"Let's stay focused. {response}"
271
+ return response
272
+
273
+ def add_emotional_stability(self, response, value):
274
+ # Add emotional stability to the response
275
+ if value > 0.5:
276
+ response = f"Let's stay calm. {response}"
277
+ return response
278
+
279
+ def add_assertiveness(self, response, value):
280
+ # Add assertiveness to the response
281
+ if value > 0.5:
282
+ response = f"I firmly believe that {response}"
283
+ return response
284
+
285
+ def add_creativity(self, response, value):
286
+ # Add creativity to the response
287
+ if value > 0.5:
288
+ response = f"Let's think outside the box. {response}"
289
+ return response
290
+
291
+ def fine_tune_personality(self, trait, value):
292
+ # Fine-tune the personality trait
293
+ if trait in self.personality_traits:
294
+ self.personality_traits[trait] = value
295
+ else:
296
+ raise ValueError(f"Unknown trait: {trait}")
297
+
298
+ def safe_word_format(self, user_input):
299
+ # Safe word format for user control
300
+ if user_input.lower() == "stop":
301
+ self.conversation_history = []
302
+ return "Conversation stopped. You can start a new conversation."
303
+ elif user_input.lower() == "reset":
304
+ self.conversation_history = []
305
+ return "Conversation reset. Let's start fresh."
306
+ else:
307
+ return None
308
+
309
+ class TransformerBlock(tf.keras.layers.Layer):
310
+ def __init__(self, n_embd, n_head):
311
+ super(TransformerBlock, self).__init__()
312
+ self.attn = MultiHeadAttention(n_embd, n_head)
313
+ self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
314
+ self.mlp = tf.keras.Sequential([
315
+ tf.keras.layers.Dense(4 * n_embd, activation=gelu),
316
+ tf.keras.layers.Dense(n_embd)
317
+ ])
318
+ self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
319
+
320
+ def call(self, x, past=None):
321
+ a, present = self.attn(self.ln_1(x), past=past)
322
+ x = x + a
323
+ m = self.mlp(self.ln_2(x))
324
+ x = x + m
325
+ return x, present
326
+
327
+ class MultiHeadAttention(tf.keras.layers.Layer):
328
+ def __init__(self, n_embd, n_head):
329
+ super(MultiHeadAttention, self).__init__()
330
+ self.n_embd = n_embd
331
+ self.n_head = n_head
332
+ self.c_attn = tf.keras.layers.Dense(3 * n_embd)
333
+ self.c_proj = tf.keras.layers.Dense(n_embd)
334
+
335
+ def split_heads(self, x):
336
+ return tf.transpose(tf.reshape(x, (*x.shape[:-1], self.n_head, -1)), [0, 2, 1, 3])
337
+
338
+ def merge_heads(self, x):
339
+ return tf.reshape(tf.transpose(x, [0, 2, 1, 3]), (*x.shape[:-3], -1))
340
+
341
+ def call(self, x, past=None):
342
+ c = self.c_attn(x)
343
+ q, k, v = tf.split(c, 3, axis=-1)
344
+ q, k, v = map(self.split_heads, [q, k, v])
345
+
346
+ if past is not None:
347
+ pk, pv = past
348
+ k = tf.concat([pk, k], axis=-2)
349
+ v = tf.concat([pv, v], axis=-2)
350
+
351
+ present = tf.stack([k, v], axis=1)
352
+ a = tf.matmul(q, k, transpose_b=True) / tf.math.sqrt(tf.cast(v.shape[-1], tf.float32))
353
+ a = tf.nn.softmax(a)
354
+ a = tf.matmul(a, v)
355
+ a = self.merge_heads(a)
356
+ a = self.c_proj(a)
357
+ return a, present
358
+
359
+ class FAISSRetriever:
360
+ def __init__(self, knowledge_base, dim=768, num_results=5):
361
+ self.index = faiss.IndexFlatL2(dim)
362
+ self.knowledge_base = knowledge_base
363
+ self.num_results = num_results
364
+
365
+ vectors = [doc['vector'] for doc in knowledge_base]
366
+ self.index.add(np.array(vectors))
367
+
368
+ def retrieve(self, query_vector):
369
+ distances, indices = self.index.search(query_vector.numpy(), self.num_results)
370
+ retrieved_docs = [self.knowledge_base[i]['text'] for i in indices[0]]
371
+ return tf.constant(retrieved_docs)
372
+
373
+ def gelu(x):
374
+ return 0.5 * x * (1 + tf.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))
375
+
376
+ # Custom loss function
377
+ def custom_loss(y_true, y_pred, model, task):
378
+ if task == 'anomaly_detection':
379
+ mse = tf.keras.losses.MeanSquaredError()
380
+ return mse(y_true, y_pred)
381
+ else:
382
+ ce_loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=True)
383
+ reg_loss = tf.reduce_sum([tf.nn.l2_loss(w) for w in model.trainable_weights])
384
+ return ce_loss + 0.01 * reg_loss
385
+
386
+ # Training function
387
+ @tf.function
388
+ def train_step(model, optimizer, inputs, targets, task):
389
+ with tf.GradientTape() as tape:
390
+ predictions = model(inputs, task)
391
+ loss = custom_loss(targets, predictions, model, task)
392
+ gradients = tape.gradient(loss, model.trainable_variables)
393
+ optimizer.apply_gradients(zip(gradients, model.trainable_variables))
394
+ return loss
395
+
396
+ # Hyperparameters
397
+ class HParams:
398
+ def __init__(self, n_vocab, n_ctx, n_embd, n_head, n_layer):
399
+ self.n_vocab = n_vocab
400
+ self.n_ctx = n_ctx
401
+ self.n_embd = n_embd
402
+ self.n_head = n_head
403
+ self.n_layer = n_layer
404
+
405
+ hparams = HParams(
406
+ n_vocab=50000,
407
+ n_ctx=1024,
408
+ n_embd=768,
409
+ n_head=12,
410
+ n_layer=12
411
+ )
412
+
413
+ # Initialize knowledge base (for demonstration)
414
+ knowledge_base = [
415
+ {'text': 'Example knowledge 1', 'vector': np.random.rand(768)},
416
+ {'text': 'Example knowledge 2', 'vector': np.random.rand(768)},
417
+ # ... more entries ...
418
+ ]
419
+
420
+ # Initialize model
421
+ model = MultiModalTransformer(hparams, knowledge_base)
422
+
423
+ # Initialize optimizer
424
+ optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
425
+
426
+ # Training loop (pseudo-code)
427
+ num_epochs = 10
428
+ for epoch in range(num_epochs):
429
+ for batch in dataset:
430
+ inputs, targets, task = batch
431
+ loss = train_step(model, optimizer, inputs, targets, task)
432
+ print(f"Epoch {epoch + 1}, Loss: {loss.numpy()}")
433
+
434
+ # Example usage
435
+ speech_input = tf.random.normal((1, 16000, 1)) # 1 second of audio at 16kHz
436
+ speech_output = model(speech_input, task='speech_recognition')
437
+
438
+ image_input = tf.random.normal((1, 224, 224, 3))
439
+ text_input = tf.random.uniform((1, 10), maxval=50000, dtype=tf.int32)
440
+ caption_output = model([image_input, text_input], task='image_captioning')
441
+
442
+ music_input = [
443
+ tf.random.uniform((1, 100), maxval=128, dtype=tf.int32), # pitch
444
+ tf.random.uniform((1, 100), maxval=32, dtype=tf.int32), # duration
445
+ tf.random.uniform((1, 100), maxval=128, dtype=tf.int32) # velocity
446
+ ]
447
+ music_output = model(music_input, task='music_generation')
448
+
449
+ text_input = tf.random.uniform((1, 50), maxval=50000, dtype=tf.int32)
450
+ text_output = model(text_input, task='text_generation')
451
+
452
+ anomaly_input = tf.random.normal((1, 100, 768))
453
+ reconstructed, anomalies = model(anomaly_input, task='anomaly_detection')
454
+
455
+ # Example conversation
456
+ user_input = "Hello, how are you?"
457
+ response = model.conversation(user_input)
458
+ print(response)
459
+
460
+ # Fine-tune personality trait
461
+ model.fine_tune_personality('kindness', 0.95)
462
+
463
+ # Safe word control
464
+ user_input = "stop"
465
+ response = model.safe_word_format(user_input)
466
+ print(response)
multimod gui ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import numpy as np
3
+ import tensorflow as tf
4
+ from PyQt5.QtWidgets import (QApplication, QWidget, QVBoxLayout, QHBoxLayout, QTextEdit, QPushButton,
5
+ QLineEdit, QLabel, QFileDialog, QTabWidget, QProgressBar)
6
+ from PyQt5.QtCore import Qt, QThread, pyqtSignal
7
+ from PyQt5.QtGui import QPixmap
8
+ import sounddevice as sd
9
+ import soundfile as sf
10
+ import librosa
11
+ from PIL import Image
12
+
13
+ from multimodal_transformer import MultiModalTransformer, HParams
14
+
15
+ class WorkerThread(QThread):
16
+ finished = pyqtSignal(object)
17
+
18
+ def __init__(self, func, *args, **kwargs):
19
+ super().__init__()
20
+ self.func = func
21
+ self.args = args
22
+ self.kwargs = kwargs
23
+
24
+ def run(self):
25
+ result = self.func(*self.args, **self.kwargs)
26
+ self.finished.emit(result)
27
+
28
+ class EnhancedChatGUI(QWidget):
29
+ def __init__(self, model):
30
+ super().__init__()
31
+ self.model = model
32
+ self.initUI()
33
+
34
+ def initUI(self):
35
+ self.setWindowTitle('MultiModal Transformer Interface')
36
+ self.setGeometry(100, 100, 800, 600)
37
+
38
+ layout = QVBoxLayout()
39
+
40
+ # Create tabs
41
+ self.tabs = QTabWidget()
42
+ self.tabs.addTab(self.createChatTab(), "Chat")
43
+ self.tabs.addTab(self.createSpeechTab(), "Speech Recognition")
44
+ self.tabs.addTab(self.createImageTab(), "Image Captioning")
45
+ self.tabs.addTab(self.createMusicTab(), "Music Generation")
46
+ self.tabs.addTab(self.createAnomalyTab(), "Anomaly Detection")
47
+
48
+ layout.addWidget(self.tabs)
49
+
50
+ self.setLayout(layout)
51
+
52
+ def createChatTab(self):
53
+ widget = QWidget()
54
+ layout = QVBoxLayout()
55
+
56
+ self.chatDisplay = QTextEdit()
57
+ self.chatDisplay.setReadOnly(True)
58
+ layout.addWidget(self.chatDisplay)
59
+
60
+ inputLayout = QHBoxLayout()
61
+ self.inputField = QLineEdit()
62
+ self.inputField.returnPressed.connect(self.sendMessage)
63
+ inputLayout.addWidget(self.inputField)
64
+
65
+ sendButton = QPushButton('Send')
66
+ sendButton.clicked.connect(self.sendMessage)
67
+ inputLayout.addWidget(sendButton)
68
+
69
+ layout.addLayout(inputLayout)
70
+
71
+ traitLayout = QHBoxLayout()
72
+ self.traitLabel = QLabel('Adjust trait:')
73
+ self.traitInput = QLineEdit()
74
+ self.traitValue = QLineEdit()
75
+ self.traitButton = QPushButton('Update')
76
+ self.traitButton.clicked.connect(self.updateTrait)
77
+
78
+ traitLayout.addWidget(self.traitLabel)
79
+ traitLayout.addWidget(self.traitInput)
80
+ traitLayout.addWidget(self.traitValue)
81
+ traitLayout.addWidget(self.traitButton)
82
+
83
+ layout.addLayout(traitLayout)
84
+
85
+ widget.setLayout(layout)
86
+ return widget
87
+
88
+ def createSpeechTab(self):
89
+ widget = QWidget()
90
+ layout = QVBoxLayout()
91
+
92
+ self.recordButton = QPushButton('Record Audio (5 seconds)')
93
+ self.recordButton.clicked.connect(self.recordAudio)
94
+ layout.addWidget(self.recordButton)
95
+
96
+ self.speechOutput = QTextEdit()
97
+ self.speechOutput.setReadOnly(True)
98
+ layout.addWidget(self.speechOutput)
99
+
100
+ widget.setLayout(layout)
101
+ return widget
102
+
103
+ def createImageTab(self):
104
+ widget = QWidget()
105
+ layout = QVBoxLayout()
106
+
107
+ self.imageButton = QPushButton('Select Image')
108
+ self.imageButton.clicked.connect(self.selectImage)
109
+ layout.addWidget(self.imageButton)
110
+
111
+ self.imageLabel = QLabel()
112
+ layout.addWidget(self.imageLabel)
113
+
114
+ self.captionOutput = QTextEdit()
115
+ self.captionOutput.setReadOnly(True)
116
+ layout.addWidget(self.captionOutput)
117
+
118
+ widget.setLayout(layout)
119
+ return widget
120
+
121
+ def createMusicTab(self):
122
+ widget = QWidget()
123
+ layout = QVBoxLayout()
124
+
125
+ self.generateMusicButton = QPushButton('Generate Music')
126
+ self.generateMusicButton.clicked.connect(self.generateMusic)
127
+ layout.addWidget(self.generateMusicButton)
128
+
129
+ self.musicOutput = QTextEdit()
130
+ self.musicOutput.setReadOnly(True)
131
+ layout.addWidget(self.musicOutput)
132
+
133
+ widget.setLayout(layout)
134
+ return widget
135
+
136
+ def createAnomalyTab(self):
137
+ widget = QWidget()
138
+ layout = QVBoxLayout()
139
+
140
+ self.anomalyButton = QPushButton('Detect Anomalies')
141
+ self.anomalyButton.clicked.connect(self.detectAnomalies)
142
+ layout.addWidget(self.anomalyButton)
143
+
144
+ self.anomalyOutput = QTextEdit()
145
+ self.anomalyOutput.setReadOnly(True)
146
+ layout.addWidget(self.anomalyOutput)
147
+
148
+ widget.setLayout(layout)
149
+ return widget
150
+
151
+ def sendMessage(self):
152
+ userInput = self.inputField.text()
153
+ self.inputField.clear()
154
+
155
+ safeWordResponse = self.model.safe_word_format(userInput)
156
+ if safeWordResponse:
157
+ self.displayMessage("User: " + userInput)
158
+ self.displayMessage("AI: " + safeWordResponse)
159
+ return
160
+
161
+ self.displayMessage("User: " + userInput)
162
+ response = self.model.conversation(userInput)
163
+ self.displayMessage("AI: " + response)
164
+
165
+ def displayMessage(self, message):
166
+ self.chatDisplay.append(message)
167
+
168
+ def updateTrait(self):
169
+ trait = self.traitInput.text()
170
+ value = float(self.traitValue.text())
171
+ try:
172
+ self.model.fine_tune_personality(trait, value)
173
+ self.displayMessage(f"System: Updated {trait} to {value}")
174
+ except ValueError as e:
175
+ self.displayMessage(f"System Error: {str(e)}")
176
+
177
+ def recordAudio(self):
178
+ duration = 5 # seconds
179
+ fs = 16000 # Sample rate
180
+ recording = sd.rec(int(duration * fs), samplerate=fs, channels=1)
181
+ sd.wait()
182
+ sf.write('temp_recording.wav', recording, fs)
183
+ self.processSpeech('temp_recording.wav')
184
+
185
+ def processSpeech(self, file_path):
186
+ audio, _ = librosa.load(file_path, sr=16000)
187
+ audio_tensor = tf.convert_to_tensor(audio, dtype=tf.float32)
188
+ audio_tensor = tf.expand_dims(audio_tensor, axis=0)
189
+
190
+ worker = WorkerThread(self.model.pipe, audio_tensor, 'speech_recognition')
191
+ worker.finished.connect(self.onSpeechRecognitionFinished)
192
+ worker.start()
193
+
194
+ def onSpeechRecognitionFinished(self, result):
195
+ self.speechOutput.setText(f"Recognized Speech: {result}")
196
+
197
+ def selectImage(self):
198
+ file_path, _ = QFileDialog.getOpenFileName(self, "Select Image", "", "Image Files (*.png *.jpg *.bmp)")
199
+ if file_path:
200
+ pixmap = QPixmap(file_path)
201
+ self.imageLabel.setPixmap(pixmap.scaled(300, 300, Qt.KeepAspectRatio))
202
+ self.processImage(file_path)
203
+
204
+ def processImage(self, file_path):
205
+ image = Image.open(file_path)
206
+ image = image.resize((224, 224))
207
+ image_array = np.array(image) / 255.0
208
+ image_tensor = tf.convert_to_tensor(image_array, dtype=tf.float32)
209
+ image_tensor = tf.expand_dims(image_tensor, axis=0)
210
+
211
+ worker = WorkerThread(self.model.pipe, [image_tensor, tf.zeros((1, 1), dtype=tf.int32)], 'image_captioning')
212
+ worker.finished.connect(self.onImageCaptioningFinished)
213
+ worker.start()
214
+
215
+ def onImageCaptioningFinished(self, result):
216
+ self.captionOutput.setText(f"Generated Caption: {result}")
217
+
218
+ def generateMusic(self):
219
+ # Generate random music input (you might want to create a more meaningful input)
220
+ pitch = tf.random.uniform((1, 100), maxval=128, dtype=tf.int32)
221
+ duration = tf.random.uniform((1, 100), maxval=32, dtype=tf.int32)
222
+ velocity = tf.random.uniform((1, 100), maxval=128, dtype=tf.int32)
223
+
224
+ worker = WorkerThread(self.model.pipe, [pitch, duration, velocity], 'music_generation')
225
+ worker.finished.connect(self.onMusicGenerationFinished)
226
+ worker.start()
227
+
228
+ def onMusicGenerationFinished(self, result):
229
+ self.musicOutput.setText(f"Generated Music: {result}")
230
+
231
+ def detectAnomalies(self):
232
+ # Generate random input for anomaly detection
233
+ anomaly_input = tf.random.normal((1, 100, 768))
234
+
235
+ worker = WorkerThread(self.model.pipe, anomaly_input, 'anomaly_detection')
236
+ worker.finished.connect(self.onAnomalyDetectionFinished)
237
+ worker.start()
238
+
239
+ def onAnomalyDetectionFinished(self, result):
240
+ reconstructed, anomalies = result
241
+ self.anomalyOutput.setText(f"Detected Anomalies: {anomalies}")
242
+
243
+ def main():
244
+ # Initialize your model here
245
+ hparams = HParams(
246
+ n_vocab=50000,
247
+ n_ctx=1024,
248
+ n_embd=768,
249
+ n_head=12,
250
+ n_layer=12
251
+ )
252
+ knowledge_base = [
253
+ {'text': 'Example knowledge 1', 'vector': np.random.rand(768)},
254
+ {'text': 'Example knowledge 2', 'vector': np.random.rand(768)},
255
+ ]
256
+ model = MultiModalTransformer(hparams, knowledge_base)
257
+
258
+ app = QApplication(sys.argv)
259
+ gui = EnhancedChatGUI(model)
260
+ gui.show()
261
+ sys.exit(app.exec_())
262
+
263
+ if __name__ == '__main__':
264
+ main()