import tensorflow as tf import numpy as np import faiss class MultiModalTransformer(tf.keras.Model): def __init__(self, hparams, knowledge_base, n_hash=1024, n_quant=256): super(MultiModalTransformer, self).__init__() self.hparams = hparams self.n_hash = n_hash self.n_quant = n_quant # Core Transformer components self.wte = tf.keras.layers.Embedding(hparams.n_vocab, hparams.n_embd) self.wpe = tf.keras.layers.Embedding(hparams.n_ctx, hparams.n_embd) self.hash_layer = tf.keras.layers.Dense(n_hash, activation='relu') self.quant_layer = tf.keras.layers.Dense(n_quant, activation='relu') self.h = [TransformerBlock(hparams.n_embd, hparams.n_head) for _ in range(hparams.n_layer)] self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5) self.fc = tf.keras.layers.Dense(hparams.n_vocab, use_bias=False) # Speech Recognition self.audio_encoder = tf.keras.Sequential([ tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'), tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'), tf.keras.layers.Conv1D(256, kernel_size=11, strides=2, padding='same', activation='relu'), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(hparams.n_embd) ]) # Image Captioning self.image_encoder = tf.keras.applications.ResNet50(include_top=False, weights='imagenet') self.image_proj = tf.keras.layers.Dense(hparams.n_embd) # Music Generation self.pitch_embedding = tf.keras.layers.Embedding(128, hparams.n_embd) self.duration_embedding = tf.keras.layers.Embedding(32, hparams.n_embd) self.velocity_embedding = tf.keras.layers.Embedding(128, hparams.n_embd) # Anomaly Detection self.anomaly_threshold = tf.Variable(0.5, trainable=False) # RAG self.knowledge_base = knowledge_base self.retriever = FAISSRetriever(knowledge_base) self.query_encoder = tf.keras.Sequential([ tf.keras.layers.Dense(hparams.n_embd, activation='relu'), tf.keras.layers.Dense(hparams.n_embd) ]) # Task-specific output layers self.speech_output = tf.keras.layers.Dense(hparams.n_vocab) self.caption_output = tf.keras.layers.Dense(hparams.n_vocab) self.music_output = tf.keras.layers.Dense(288) # 128 (pitch) + 32 (duration) + 128 (velocity) self.anomaly_output = tf.keras.layers.Dense(1, activation='sigmoid') # Conversation history self.conversation_history = [] # Personality traits self.personality_traits = { 'kindness': 0.9, 'honesty': 0.9, 'resilience': 0.8, 'open_mindedness': 0.8, 'empathy': 0.9, 'reliability': 0.9, 'humility': 0.8, 'positivity': 0.9, 'courage': 0.8, 'curiosity': 0.9, 'humor': 0.8, 'self_discipline': 0.8, 'emotional_stability': 0.8, 'assertiveness': 0.8, 'creativity': 0.9 } def call(self, inputs, task): if task == 'speech_recognition': x = self.audio_encoder(inputs) elif task == 'image_captioning': image, text = inputs image_features = self.image_encoder(image) image_features = self.image_proj(tf.keras.layers.GlobalAveragePooling2D()(image_features)) x = tf.concat([image_features[:, tf.newaxis, :], self.wte(text)], axis=1) elif task == 'music_generation': pitch, duration, velocity = inputs x = self.pitch_embedding(pitch) + self.duration_embedding(duration) + self.velocity_embedding(velocity) elif task in ['text_generation', 'anomaly_detection']: x = self.wte(inputs) else: raise ValueError(f"Unknown task: {task}") # RAG for text-based tasks if task in ['text_generation', 'image_captioning']: query = x[:, 0, :] # Use first token as query encoded_query = self.query_encoder(query) retrieved_docs = self.retriever.retrieve(encoded_query) x = tf.concat([x, self.wte(retrieved_docs)], axis=1) # Add positional embeddings position = tf.range(0, x.shape[1], dtype=tf.int32)[tf.newaxis, :] x = x + self.wpe(position) # Apply core Transformer layers x = self.hash_layer(x) x = self.quant_layer(x) for layer in self.h: x, _ = layer(x) x = self.ln_f(x) # Task-specific outputs if task == 'speech_recognition': return self.speech_output(x) elif task == 'image_captioning': return self.caption_output(x) elif task == 'music_generation': return self.music_output(x) elif task == 'anomaly_detection': reconstruction = self.fc(x) reconstruction_loss = tf.reduce_mean(tf.square(inputs - reconstruction), axis=-1) anomaly_scores = tf.where(reconstruction_loss > self.anomaly_threshold, 1.0, 0.0) return reconstruction, anomaly_scores else: # text_generation return self.fc(x) def pipe(self, inputs, task): if task == 'speech_recognition': return self.call(inputs, task) elif task == 'image_captioning': return self.call(inputs, task) elif task == 'music_generation': return self.call(inputs, task) elif task == 'text_generation': return self.call(inputs, task) elif task == 'anomaly_detection': return self.call(inputs, task) else: raise ValueError(f"Unknown task: {task}") def conversation(self, user_input): # Add user input to conversation history self.conversation_history.append(user_input) # Generate response based on conversation history and personality traits response = self.generate_response(self.conversation_history) # Add response to conversation history self.conversation_history.append(response) return response def generate_response(self, conversation_history): # Concatenate conversation history into a single input conversation_input = tf.concat(conversation_history, axis=0) # Generate response using the model response = self.pipe(conversation_input, task='text_generation') # Apply personality traits to the response response = self.apply_personality_traits(response) return response def apply_personality_traits(self, response): # Apply personality traits to the response for trait, value in self.personality_traits.items(): if trait == 'kindness': response = self.add_kindness(response, value) elif trait == 'honesty': response = self.add_honesty(response, value) elif trait == 'resilience': response = self.add_resilience(response, value) elif trait == 'open_mindedness': response = self.add_open_mindedness(response, value) elif trait == 'empathy': response = self.add_empathy(response, value) elif trait == 'reliability': response = self.add_reliability(response, value) elif trait == 'humility': response = self.add_humility(response, value) elif trait == 'positivity': response = self.add_positivity(response, value) elif trait == 'courage': response = self.add_courage(response, value) elif trait == 'curiosity': response = self.add_curiosity(response, value) elif trait == 'humor': response = self.add_humor(response, value) elif trait == 'self_discipline': response = self.add_self_discipline(response, value) elif trait == 'emotional_stability': response = self.add_emotional_stability(response, value) elif trait == 'assertiveness': response = self.add_assertiveness(response, value) elif trait == 'creativity': response = self.add_creativity(response, value) return response def add_kindness(self, response, value): # Add kindness to the response if value > 0.5: response = f"I understand your concern. {response}" return response def add_honesty(self, response, value): # Add honesty to the response if value > 0.5: response = f"To be honest, {response}" return response def add_resilience(self, response, value): # Add resilience to the response if value > 0.5: response = f"Let's keep trying. {response}" return response def add_open_mindedness(self, response, value): # Add open-mindedness to the response if value > 0.5: response = f"That's an interesting perspective. {response}" return response def add_empathy(self, response, value): # Add empathy to the response if value > 0.5: response = f"I can see how you feel. {response}" return response def add_reliability(self, response, value): # Add reliability to the response if value > 0.5: response = f"You can count on me. {response}" return response def add_humility(self, response, value): # Add humility to the response if value > 0.5: response = f"I'm still learning. {response}" return response def add_positivity(self, response, value): # Add positivity to the response if value > 0.5: response = f"Let's stay positive. {response}" return response def add_courage(self, response, value): # Add courage to the response if value > 0.5: response = f"Let's face this together. {response}" return response def add_curiosity(self, response, value): # Add curiosity to the response if value > 0.5: response = f"That's fascinating. {response}" return response def add_humor(self, response, value): # Add humor to the response if value > 0.5: response = f"On a lighter note, {response}" return response def add_self_discipline(self, response, value): # Add self-discipline to the response if value > 0.5: response = f"Let's stay focused. {response}" return response def add_emotional_stability(self, response, value): # Add emotional stability to the response if value > 0.5: response = f"Let's stay calm. {response}" return response def add_assertiveness(self, response, value): # Add assertiveness to the response if value > 0.5: response = f"I firmly believe that {response}" return response def add_creativity(self, response, value): # Add creativity to the response if value > 0.5: response = f"Let's think outside the box. {response}" return response def fine_tune_personality(self, trait, value): # Fine-tune the personality trait if trait in self.personality_traits: self.personality_traits[trait] = value else: raise ValueError(f"Unknown trait: {trait}") def safe_word_format(self, user_input): # Safe word format for user control if user_input.lower() == "stop": self.conversation_history = [] return "Conversation stopped. You can start a new conversation." elif user_input.lower() == "reset": self.conversation_history = [] return "Conversation reset. Let's start fresh." else: return None class TransformerBlock(tf.keras.layers.Layer): def __init__(self, n_embd, n_head): super(TransformerBlock, self).__init__() self.attn = MultiHeadAttention(n_embd, n_head) self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=1e-5) self.mlp = tf.keras.Sequential([ tf.keras.layers.Dense(4 * n_embd, activation=gelu), tf.keras.layers.Dense(n_embd) ]) self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=1e-5) def call(self, x, past=None): a, present = self.attn(self.ln_1(x), past=past) x = x + a m = self.mlp(self.ln_2(x)) x = x + m return x, present class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, n_embd, n_head): super(MultiHeadAttention, self).__init__() self.n_embd = n_embd self.n_head = n_head self.c_attn = tf.keras.layers.Dense(3 * n_embd) self.c_proj = tf.keras.layers.Dense(n_embd) def split_heads(self, x): return tf.transpose(tf.reshape(x, (*x.shape[:-1], self.n_head, -1)), [0, 2, 1, 3]) def merge_heads(self, x): return tf.reshape(tf.transpose(x, [0, 2, 1, 3]), (*x.shape[:-3], -1)) def call(self, x, past=None): c = self.c_attn(x) q, k, v = tf.split(c, 3, axis=-1) q, k, v = map(self.split_heads, [q, k, v]) if past is not None: pk, pv = past k = tf.concat([pk, k], axis=-2) v = tf.concat([pv, v], axis=-2) present = tf.stack([k, v], axis=1) a = tf.matmul(q, k, transpose_b=True) / tf.math.sqrt(tf.cast(v.shape[-1], tf.float32)) a = tf.nn.softmax(a) a = tf.matmul(a, v) a = self.merge_heads(a) a = self.c_proj(a) return a, present class FAISSRetriever: def __init__(self, knowledge_base, dim=768, num_results=5): self.index = faiss.IndexFlatL2(dim) self.knowledge_base = knowledge_base self.num_results = num_results vectors = [doc['vector'] for doc in knowledge_base] self.index.add(np.array(vectors)) def retrieve(self, query_vector): distances, indices = self.index.search(query_vector.numpy(), self.num_results) retrieved_docs = [self.knowledge_base[i]['text'] for i in indices[0]] return tf.constant(retrieved_docs) def gelu(x): return 0.5 * x * (1 + tf.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))) # Custom loss function def custom_loss(y_true, y_pred, model, task): if task == 'anomaly_detection': mse = tf.keras.losses.MeanSquaredError() return mse(y_true, y_pred) else: ce_loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=True) reg_loss = tf.reduce_sum([tf.nn.l2_loss(w) for w in model.trainable_weights]) return ce_loss + 0.01 * reg_loss # Training function @tf.function def train_step(model, optimizer, inputs, targets, task): with tf.GradientTape() as tape: predictions = model(inputs, task) loss = custom_loss(targets, predictions, model, task) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) return loss # Hyperparameters class HParams: def __init__(self, n_vocab, n_ctx, n_embd, n_head, n_layer): self.n_vocab = n_vocab self.n_ctx = n_ctx self.n_embd = n_embd self.n_head = n_head self.n_layer = n_layer hparams = HParams( n_vocab=50000, n_ctx=1024, n_embd=768, n_head=12, n_layer=12 ) # Initialize knowledge base (for demonstration) knowledge_base = [ {'text': 'Example knowledge 1', 'vector': np.random.rand(768)}, {'text': 'Example knowledge 2', 'vector': np.random.rand(768)}, # ... more entries ... ] # Initialize model model = MultiModalTransformer(hparams, knowledge_base) # Initialize optimizer optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4) # Training loop (pseudo-code) num_epochs = 10 for epoch in range(num_epochs): for batch in dataset: inputs, targets, task = batch loss = train_step(model, optimizer, inputs, targets, task) print(f"Epoch {epoch + 1}, Loss: {loss.numpy()}") # Example usage speech_input = tf.random.normal((1, 16000, 1)) # 1 second of audio at 16kHz speech_output = model(speech_input, task='speech_recognition') image_input = tf.random.normal((1, 224, 224, 3)) text_input = tf.random.uniform((1, 10), maxval=50000, dtype=tf.int32) caption_output = model([image_input, text_input], task='image_captioning') music_input = [ tf.random.uniform((1, 100), maxval=128, dtype=tf.int32), # pitch tf.random.uniform((1, 100), maxval=32, dtype=tf.int32), # duration tf.random.uniform((1, 100), maxval=128, dtype=tf.int32) # velocity ] music_output = model(music_input, task='music_generation') text_input = tf.random.uniform((1, 50), maxval=50000, dtype=tf.int32) text_output = model(text_input, task='text_generation') anomaly_input = tf.random.normal((1, 100, 768)) reconstructed, anomalies = model(anomaly_input, task='anomaly_detection') # Example conversation user_input = "Hello, how are you?" response = model.conversation(user_input) print(response) # Fine-tune personality trait model.fine_tune_personality('kindness', 0.95) # Safe word control user_input = "stop" response = model.safe_word_format(user_input) print(response)