--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-set_5 results: [] --- # bert-base-uncased-finetuned-set_5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3627 - Accuracy: 0.8690 - Qwk: 0.8044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Qwk | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 92 | 0.4092 | 0.8542 | 0.6368 | | No log | 2.0 | 184 | 0.3892 | 0.8452 | 0.7958 | | No log | 3.0 | 276 | 0.3484 | 0.8512 | 0.7103 | | No log | 4.0 | 368 | 0.3624 | 0.8452 | 0.7737 | | No log | 5.0 | 460 | 0.3627 | 0.8690 | 0.8044 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0