Update README.md
Browse files
README.md
CHANGED
@@ -37,8 +37,6 @@ This model is intended for transcribing spoken Javanese language from audio reco
|
|
37 |
|
38 |
The model use OpenSLR41 datasets, and split into 2 section (training and testing), then the model is trained using 1xA100 GPU with a training duration of 4-5 hours.
|
39 |
|
40 |
-
## Training procedure
|
41 |
-
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
@@ -79,6 +77,90 @@ The following hyperparameters were used during training:
|
|
79 |
| 0.0328 | 59.4901 | 42000 | 0.2887 | 0.1654 |
|
80 |
| 0.0324 | 62.3229 | 44000 | 0.2843 | 0.1502 |
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
### Framework versions
|
84 |
|
|
|
37 |
|
38 |
The model use OpenSLR41 datasets, and split into 2 section (training and testing), then the model is trained using 1xA100 GPU with a training duration of 4-5 hours.
|
39 |
|
|
|
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
|
|
77 |
| 0.0328 | 59.4901 | 42000 | 0.2887 | 0.1654 |
|
78 |
| 0.0324 | 62.3229 | 44000 | 0.2843 | 0.1502 |
|
79 |
|
80 |
+
### How to run (Gradio Web)
|
81 |
+
```python
|
82 |
+
import torch
|
83 |
+
import torchaudio
|
84 |
+
import gradio as gr
|
85 |
+
import numpy as np
|
86 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCTC
|
87 |
+
|
88 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
89 |
+
|
90 |
+
# Load the model and processor
|
91 |
+
MODEL_NAME = "<fill this to your model>"
|
92 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
93 |
+
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
|
94 |
+
|
95 |
+
# Move model to GPU
|
96 |
+
model.to(device)
|
97 |
+
|
98 |
+
# Create the pipeline with the model and processor
|
99 |
+
transcriber = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=device)
|
100 |
+
|
101 |
+
def transcribe(audio):
|
102 |
+
sr, y = audio
|
103 |
+
y = y.astype(np.float32)
|
104 |
+
y /= np.max(np.abs(y))
|
105 |
+
|
106 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
107 |
+
|
108 |
+
demo = gr.Interface(
|
109 |
+
transcribe,
|
110 |
+
gr.Audio(sources=["upload"]),
|
111 |
+
"text",
|
112 |
+
)
|
113 |
+
|
114 |
+
demo.launch(share=True)
|
115 |
+
```
|
116 |
+
|
117 |
+
### How to run
|
118 |
+
```python
|
119 |
+
import torch
|
120 |
+
import torchaudio
|
121 |
+
import gradio as gr
|
122 |
+
import numpy as np
|
123 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCTC
|
124 |
+
|
125 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
126 |
+
|
127 |
+
# Load the model and processor
|
128 |
+
MODEL_NAME = "<fill this to actual model>"
|
129 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
130 |
+
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
|
131 |
+
|
132 |
+
# Move model to GPU
|
133 |
+
model.to(device)
|
134 |
+
|
135 |
+
# Load audio file
|
136 |
+
AUDIO_PATH = "<replace 'path_to_audio_file.wav' with the actual path to your audio file>"
|
137 |
+
audio_input, sample_rate = torchaudio.load(AUDIO_PATH)
|
138 |
+
|
139 |
+
# Ensure the audio is mono (1 channel)
|
140 |
+
if audio_input.shape[0] > 1:
|
141 |
+
audio_input = torch.mean(audio_input, dim=0, keepdim=True)
|
142 |
+
|
143 |
+
# Resample audio if necessary
|
144 |
+
if sample_rate != 16000:
|
145 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
146 |
+
audio_input = resampler(audio_input)
|
147 |
+
|
148 |
+
# Process the audio input
|
149 |
+
input_values = processor(audio_input.squeeze(), sampling_rate=16000, return_tensors="pt").input_values
|
150 |
+
|
151 |
+
# Move input values to GPU
|
152 |
+
input_values = input_values.to(device)
|
153 |
+
|
154 |
+
# Perform inference
|
155 |
+
with torch.no_grad():
|
156 |
+
logits = model(input_values).logits
|
157 |
+
|
158 |
+
# Decode the logits to text
|
159 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
160 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
161 |
+
|
162 |
+
print("Transcription:", transcription)
|
163 |
+
```
|
164 |
|
165 |
### Framework versions
|
166 |
|