Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +20 -20
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -120.90 +/- 57.60
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9190bd4820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9190bd48b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9190bd4940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9190bd49d0>", "_build": "<function ActorCriticPolicy._build at 0x7f9190bd4a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f9190bd4af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9190bd4b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9190bd4c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9190bd4ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9190bd4d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9190bd4dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9190bd4e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9190bd84c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709256009910323811, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABbcr0pTBy6714oOR55hDQLaxs7OP5AuAAAgD8AAIA/ANxDvI8eN7p2Bew6r1OsNYxalblZ4Qu6AACAPwAAgD8a/3A9SDuaulv43LiPoKyz3oQyumq5/jcAAIA/AACAPxLStb7Ty2Q/xcfXvMxpRb70K4C+UoXSPQAAAAAAAAAAM0kMPFzXSbrSJIM6nHFENoIOB7tWB5a5AACAPwAAgD/APII9UqDcuXa4zbZr52KxIeeKu4Ap9zUAAIA/AACAPwCnnTyFq+e5IWo9NURWdC6oiAe7Vk1NtAAAgD8AAIA/GhJIPSk0drqBjiw6AjEwNatfFru25km5AACAPwAAgD+ag0Y9jwY3ul74u7uLYZM3avnhOtNd97YAAIA/AACAPzMoqDyfILS7BoQWPC/miDyxeRU9zcBovQAAgD8AAIA/zVuiPVxjJ7qm3ds6RGDENDT7DDqiXf+5AACAPwAAgD/NDc889gQLugic1bb8pE02ZGlvOW9iyzUAAIA/AACAPw2Igb3hkIS6SEXPu8MZ1zcxt9E5cvYWtwAAgD8AAIA/zc3vPBROj7qz0dO6fMJ7NY30HbsiV/A5AACAPwAAgD+zB3o9w+l1uqLUIjhEyRMzwiiaOeqJPrcAAIA/AACAP4BPIj3DzSu6DmwRuJWMoDKHMPC6sn8mNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF7Kfek56t2MAWyUTegDjAF0lEdAgYa2Fev6j3V9lChoBkdAYPSYUnG83GgHTegDaAhHQIGSk3sHB1t1fZQoaAZHQF8Oqaw2VFBoB03oA2gIR0CBkxX05EMLdX2UKGgGR0BiJcT8HfMwaAdN6ANoCEdAgZRPDP4VRHV9lChoBkdAZbygA6uGK2gHTegDaAhHQIGVs6/7BO51fZQoaAZHQGK3TCk43m5oB03oA2gIR0CBnt1IRRMwdX2UKGgGR0BeXnuiN83NaAdN6ANoCEdAgaZQ/5ckdHV9lChoBkdAWnsZEUj9oGgHTegDaAhHQIGm/OW0JF91fZQoaAZHQFt0fsNUfgdoB03oA2gIR0CBp1tWMju8dX2UKGgGR0Bi7FuxbB42aAdN6ANoCEdAgb/F0YCQtHV9lChoBkdAWsd8jRlYl2gHTegDaAhHQIHBskQf6oF1fZQoaAZHQGCZY8uBczJoB03oA2gIR0CBxHsiSq2jdX2UKGgGR0BghUOXmeUZaAdN6ANoCEdAgcZ8lXzUZ3V9lChoBkdAYV1L6k6902gHTegDaAhHQIHG/AXVLBd1fZQoaAZHQCIx0Qsf7rNoB00uAWgIR0CBydQJokAxdX2UKGgGR0Bi6Gogmqo7aAdN6ANoCEdAgcrj7qIJq3V9lChoBkdAZW1ymQ8wH2gHTegDaAhHQIHOGReTmnx1fZQoaAZHQGddUQkHD79oB03oA2gIR0CB1imCROk+dX2UKGgGR8A0KpQ1rIo3aAdNIQFoCEdAgddgKfFrEnV9lChoBkdAaglIdU83dmgHTZkDaAhHQIHdggPmPo51fZQoaAZHQGJdczhxYJVoB03oA2gIR0CB4SwX668QdX2UKGgGR0BlmHznRsuWaAdN6ANoCEdAgeGhwVCXyHV9lChoBkdAYhQjD8+A3GgHTegDaAhHQIHkHBtUGV11fZQoaAZHQGcI5B9kSVZoB03oA2gIR0CB7P5ooNNKdX2UKGgGR0BeSodQwblzaAdN6ANoCEdAgfSg0bcXWXV9lChoBkdAZ3sssg+yJWgHTegDaAhHQIH1UEeQuEp1fZQoaAZHQF/SHqeK8+RoB03oA2gIR0CB/mADJU5udX2UKGgGR0Blj6bSZ0CBaAdN6ANoCEdAghFYHX2/SHV9lChoBkdAYXHbItDlYGgHTegDaAhHQIIUbVvuPWB1fZQoaAZHQGFxCF9KEnNoB03oA2gIR0CCFprtVrAQdX2UKGgGR0Be/W74BV+7aAdN6ANoCEdAghpcurZJ1HV9lChoBkdAYRXpyIYWL2gHTegDaAhHQIIbk1IiC8R1fZQoaAZHQGVSBbwBo25oB03oA2gIR0CCHvNVR1oydX2UKGgGR0ByH9bzK9wnaAdNDgJoCEdAgibTkZJkG3V9lChoBkdAZ1+Xdj5KvmgHTegDaAhHQIIndIGyHEd1fZQoaAZHQGQwEe6qbSZoB03oA2gIR0CCKJuWrwOOdX2UKGgGR0Brm8o6S1VpaAdNbgFoCEdAgiqX5FgDzXV9lChoBkdAZCWoPTXrdGgHTegDaAhHQIIuELronrp1fZQoaAZHQGWhnUtqYZ5oB03oA2gIR0CCMTnoPkJbdX2UKGgGR0Bh0rO5avA5aAdN6ANoCEdAgjGi8Fpwj3V9lChoBkdAZkED3dsSCmgHTegDaAhHQIIzwd2gWad1fZQoaAZHQHCB2mUGFBZoB00+AWgIR0CCOWC3gDRudX2UKGgGR0BjBuGmDUVjaAdN6ANoCEdAgjwEU9IPLHV9lChoBkdAbhV5sTFl1GgHTUcDaAhHQIJCMxGlQ/J1fZQoaAZHQGa1Jb+tKZloB03oA2gIR0CCRANuLrHEdX2UKGgGR0Bhs0zqKP4maAdN6ANoCEdAgk7u5jH4oXV9lChoBkdAYqmk7fYSQGgHTegDaAhHQIJlXQMQVbl1fZQoaAZHQG+aX/xUedVoB026AWgIR0CCZzfu1F6SdX2UKGgGR0BA4vxQSBbwaAdNJQFoCEdAgmg8IAwPAnV9lChoBkdAX3JQl8gIQmgHTegDaAhHQIJpGfChvit1fZQoaAZHQGMGV3+uNgloB03oA2gIR0CCajQBPsRhdX2UKGgGR0BkhPQ4S6DoaAdN6ANoCEdAgm1RzzVc2XV9lChoBkdAbVQow22oemgHTcYCaAhHQIJwbe9Ba9t1fZQoaAZHQGJjZzPrv9doB03oA2gIR0CCdKYMOPNndX2UKGgGR0BhmlENOM2naAdN6ANoCEdAgnWiW/rSmnV9lChoBkdAYbSYaYNRWWgHTegDaAhHQIJ3ZFEy+Ht1fZQoaAZHQGHt6wljVhFoB03oA2gIR0CCerKODJ2ddX2UKGgGR0Bi2crbxmTUaAdN6ANoCEdAgn3TvZyuIXV9lChoBkdAZ0X4Pf8/EGgHTegDaAhHQIJ+PPzFuNx1fZQoaAZHQGLJK4hEBsBoB03oA2gIR0CCifWkrPMTdX2UKGgGR0BvXbNpudf+aAdNiwJoCEdAgotuRkmQbXV9lChoBkdAZRLH3lCCz2gHTegDaAhHQIKQfCQ9zOp1fZQoaAZHQF8znO0LMLZoB03oA2gIR0CCnv2FFlTWdX2UKGgGR0Bg+fsRg7YDaAdN6ANoCEdAgrhi0WuX/3V9lChoBkdAXdrgiu+yq2gHTegDaAhHQIK5oSSNfgJ1fZQoaAZHQGOL1W0Z3s5oB03oA2gIR0CCuqjqOcUedX2UKGgGR0BiZoYcebNKaAdN6ANoCEdAgrvtWuHN5nV9lChoBkdAbYNhYvFm4GgHTUIDaAhHQIK92plz2ex1fZQoaAZHQGQDQlKK509oB03oA2gIR0CCv3GwRoRJdX2UKGgGR0BhSk7bL2YfaAdN6ANoCEdAgsK/wZwXInV9lChoBkdAZxm/0NBnjGgHTegDaAhHQILIQSlFc6h1fZQoaAZHQGHecTJyQxNoB03oA2gIR0CCyj3yqdYodX2UKGgGR0BnEIkzGgjAaAdN6ANoCEdAgs3gTIvJzXV9lChoBkdAcMJOLzf78GgHTcUCaAhHQILQodMj/uN1fZQoaAZHQGE/D63y7PJoB03oA2gIR0CC0VC1JDmbdX2UKGgGR0BjGxVXFLnLaAdN6ANoCEdAgtG3kxREW3V9lChoBkdAbOWuFHrhSGgHTcMBaAhHQILTTmQr+YN1fZQoaAZHQGHx8A7xNItoB03oA2gIR0CC3ERXfZVXdX2UKGgGR0Bh04Zjx0+1aAdN6ANoCEdAgt2rGaQV9HV9lChoBkdAbxIZ8a4tpWgHTUsCaAhHQILexuMuOCJ1fZQoaAZHQEdbqk/KQq9oB0v3aAhHQILfmalUIcB1fZQoaAZHQD807jkuHvdoB00KAWgIR0CC47wIdELIdX2UKGgGR0Bxq6EUTL4faAdN+QFoCEdAgu2RFAmiQHV9lChoBkdAZfOWa+evp2gHTegDaAhHQILu7lPrOZ91fZQoaAZHQGCs2+49X91oB03oA2gIR0CDCTMoMKCydX2UKGgGR0BfYzXnQpnZaAdN6ANoCEdAgwo+Pq9oOHV9lChoBkdAZAUdBjWkJ2gHTegDaAhHQIMNvjp9qlB1fZQoaAZHQHE7oGlhw2loB02JAWgIR0CDD3RkVerudX2UKGgGR0BnhvjjrAxjaAdN6ANoCEdAgw+VdX1an3V9lChoBkdAYLaHt4RmLGgHTegDaAhHQIMTQUrTYul1fZQoaAZHQHHzwkxASnNoB01aAmgIR0CDFQbtJFspdX2UKGgGR0Bliet2cJ+laAdN6ANoCEdAgxiVqFh5PnV9lChoBkdAcBpUL2HtW2gHTY4CaAhHQIMY9W6shgV1fZQoaAZHQGXMkona37VoB03oA2gIR0CDGjaouPFOdX2UKGgGR0BnKGmR/3FlaAdN6ANoCEdAgyAXRgJC0HV9lChoBkdAY6h7Jnxri2gHTegDaAhHQIMgeQMhHLB1fZQoaAZHQG+MKFIuoP1oB01kAmgIR0CDI2rhBJI2dX2UKGgGR0BlthI8QqZuaAdN6ANoCEdAgyzjEehf0HV9lChoBkdAZDbIFNcnmmgHTegDaAhHQIMttl/Yrax1fZQoaAZHQGen6dDpkf9oB03oA2gIR0CDPdqGlANYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9ob21lL2NoaW4vYW5hY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvaG9tZS9jaGluL2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9ob21lL2NoaW4vYW5hY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvaG9tZS9jaGluL2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.5.0-21-generic-x86_64-with-glibc2.35 # 21~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 9 13:32:52 UTC 2", "Python": "3.10.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fda61eada20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fda61eadab0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fda61eadb40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fda61eadbd0>", "_build": "<function ActorCriticPolicy._build at 0x7fda61eadc60>", "forward": "<function ActorCriticPolicy.forward at 0x7fda61eadcf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fda61eadd80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fda61eade10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fda61eadea0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fda61eadf30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fda61eadfc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fda61eae050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fda61eb8a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709257256109635960, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEB/k71GO6s/XcmYvrV1qb6MgT+8/ikcvgAAAAAAAAAAWsdIvrd4Kz+jNn++Vl9AvyiX1b1Agmm+AAAAAAAAAABa79C+9BolP5sSX7+FeD6/T6TUPRtfUr4AAAAAAAAAAKC6HT7Sqpk/trhVPvl8K7/pnDM+5iVxPgAAAAAAAAAAzXhrPC+ejj+bC2U9shZGv7N9A756trS9AAAAAAAAAAC6zn0+tjopP1SXET80m2y/oF6uvlI0Mb4AAAAAAAAAAFqvsz09rLQ/Tva8PhsiYb6Kjim9TlNCPQAAAAAAAAAAM16wvaQqsj9OSQq/VJgkvtM+FT2p86m9AAAAAAAAAAAg0YO+IU84P/jzIr9JzVe/O7HavT0Ba74AAAAAAAAAAGbWUDx6ebY/yTu8PYyEEb41ohC+8GVjvgAAAAAAAAAAykjePkpKij6KwC8/x3Wpv9Mm/7xsiK8+AAAAAAAAAAD4UP6++7FuP8vGhb6Jk4O/KHknv1tFsL0AAAAAAAAAAMq/rL4HN7I+0FEavpRJe790FKW+j9MNvgAAAAAAAAAA2nidvie+Gz6CqIk7wjuMv2yMcb4ZCCO9AAAAAAAAAADNjJm9VpO3P1YhN76nA4G+ntXWPGBc470AAAAAAAAAAOaGrz1QvIg/Yo7LPjddWb+HlCS9pvGJvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFWpy9VWCEqMAWyUS1aMAXSUR0BHNOuA7PpqdX2UKGgGR8BFP6hYeT3ZaAdLQ2gIR0BHNtmlImPYdX2UKGgGR8BVrHg9/z8QaAdLYGgIR0BHOPpQk5ZKdX2UKGgGR0AOBhKDkELZaAdLSmgIR0BHO0EPlMh6dX2UKGgGR8BVxWEkB0ZFaAdLh2gIR0BHO6Jhvze5dX2UKGgGR8BYDdOZb6gvaAdLjWgIR0BHPIrOJLuhdX2UKGgGR8BUGjZ13dKvaAdLYmgIR0BHPWYv38GcdX2UKGgGR8BJQhkRSP2gaAdLjWgIR0BHQXsw+MZQdX2UKGgGR8BNGrCemNzbaAdLR2gIR0BHRJI+W4VidX2UKGgGR8BY7pKODJ2daAdLUWgIR0BHR6vicXnAdX2UKGgGR8BHHtdJJ5E/aAdLfmgIR0BHR+JP69CedX2UKGgGR8BUaWseXAuaaAdLXWgIR0BHSM7U5MlDdX2UKGgGR8BGLUJ4SpR5aAdLTGgIR0BHSbp3X7LudX2UKGgGR8BfULMs6JZXaAdLWGgIR0BHSmGmDUVjdX2UKGgGR8BX1zR2KVIJaAdLdWgIR0BHStuUD+zddX2UKGgGR8BSeNKdxyXEaAdLQ2gIR0BHTXiJfpljdX2UKGgGR8BQ2Isqaw2VaAdLRmgIR0BHUFqzqrzYdX2UKGgGR8BYb7qlgtvoaAdLemgIR0BHUe717IDHdX2UKGgGR8BaZq/20zCUaAdLiWgIR0BHU3SBshxHdX2UKGgGR8BLbZ5qubI+aAdLVWgIR0BHU6guh9LIdX2UKGgGR8BcZd9tuUD/aAdLaWgIR0BHVZvtMPBjdX2UKGgGR8BZIHg5zYEoaAdLdWgIR0BHVrfDUExJdX2UKGgGR8BUXBPCVKPGaAdLQmgIR0BHWZPl+3H8dX2UKGgGR8BHXbE5yU9qaAdLcGgIR0BHWeKsMiKSdX2UKGgGR8BSuWdiDujRaAdLdWgIR0BHYUgKWszVdX2UKGgGR8BWytkSVW0aaAdLYmgIR0BHZFBQemvXdX2UKGgGR8BQ2/mDDjzaaAdLR2gIR0BHZVSGahHtdX2UKGgGR8BQ2cIu5BkaaAdLZGgIR0BHZaJIlMRIdX2UKGgGR8BBZ71Iy0rtaAdLaGgIR0BHZz/6wdKedX2UKGgGR8Bi0WuieumraAdLc2gIR0BHaFxXGOuJdX2UKGgGR8BG+N0NjLB9aAdLXGgIR0BHabr9l2/0dX2UKGgGR8BfcH1J17pnaAdLi2gIR0BHavVNHpbEdX2UKGgGR8BczegUUO/daAdLeGgIR0BHbpAlfJFLdX2UKGgGR8BTZVSS/0ulaAdLWGgIR0BHbzQmeDnOdX2UKGgGR8BNTLk8zQ/paAdLUmgIR0BHcJTl1bJPdX2UKGgGR8BluT7TDwYtaAdLlWgIR0BHcQOe8PFvdX2UKGgGR8BPTWl2vB8AaAdLdWgIR0BHc+FtbcGkdX2UKGgGR8BTErVawD/3aAdLTmgIR0BHdzqB3A2ydX2UKGgGR8Biu6j8DSw4aAdLg2gIR0BHd5lWfbsXdX2UKGgGR8BSlZWvKU3XaAdLamgIR0BHd3aBZpztdX2UKGgGR8BTw+ejEehgaAdLfmgIR0BHeHIQvpQldX2UKGgGR8BQIG9pRGc4aAdLS2gIR0BHfjCP6sQvdX2UKGgGR8BGAY7Rv3rVaAdLRmgIR0BHfgY51eSkdX2UKGgGR8BYyNMbm2b5aAdLWGgIR0BHf2jXWe6JdX2UKGgGR8BQTOHSF49paAdLS2gIR0BHgvXTVlPKdX2UKGgGR8BKBaxHG0eEaAdLTWgIR0BHhCQ1aW5ZdX2UKGgGR8BUQnAIppevaAdLc2gIR0BHhCj1wo9cdX2UKGgGR8BUiQqVhTfjaAdLTWgIR0BHhfM4cWCVdX2UKGgGR8BShCpvP1L8aAdLdWgIR0BHheZG8VYZdX2UKGgGR8BQt7MxGlQ/aAdLbWgIR0BHhll9Sde6dX2UKGgGR8BSr5m29crzaAdLQ2gIR0BHiUj1PFefdX2UKGgGR8BQ/f8hs67vaAdLR2gIR0BHi4Y77sOYdX2UKGgGR8BnJAcWCVbBaAdLkWgIR0BHjQeNkvsadX2UKGgGR8BIfV0DEFW5aAdLYGgIR0BHjeY+jdpJdX2UKGgGR8BJEcJ+lTFVaAdLXGgIR0BHkD9n9NvgdX2UKGgGR8Ba5neBQN1AaAdLgmgIR0BHk7G3nZCfdX2UKGgGR8BIsD/VAiV0aAdLO2gIR0BHk/WlMyrQdX2UKGgGR8A9bJkoWpIdaAdLUmgIR0BHlZggHNX6dX2UKGgGR8BfKkzKs+3ZaAdLdWgIR0BHlyro4dZJdX2UKGgGR8BRJkjC53C9aAdLT2gIR0BHmwsoUi6hdX2UKGgGR8AqHoIOYplSaAdLVmgIR0BHnR+SbH6udX2UKGgGR8BRwp6Y3Ns4aAdLdmgIR0BHnhX0XgtOdX2UKGgGR8BgztMsYl6aaAdLZmgIR0BHnrBsQ/X5dX2UKGgGR8Bf1R6OYIBzaAdLemgIR0BHn3AmAskIdX2UKGgGR8BF+ZElVtGeaAdLdWgIR0BHo94u9OARdX2UKGgGR8BgH9KRMewLaAdLe2gIR0BHp71yvLX+dX2UKGgGR8BCWI9TxXnyaAdLSmgIR0BHqG7SRbKSdX2UKGgGR8BYte7YkE9uaAdLc2gIR0BHqOIyj59FdX2UKGgGR8BSROlO45LiaAdLW2gIR0BHqV/DtPYWdX2UKGgGR8BRpGVVxS5zaAdLd2gIR0BHrcnE2pAEdX2UKGgGR8BXOdPpIMBqaAdLemgIR0BHr4pUgjhUdX2UKGgGR8BdMiiItUXIaAdLgmgIR0BHr2ll9SdfdX2UKGgGR8BRPD9sJpnIaAdLbmgIR0BHtBBiTdLydX2UKGgGR8A2OR3NcGC7aAdLW2gIR0BHtHhsImgKdX2UKGgGR8BXI8vIwM6SaAdLeGgIR0BHtQLE1l5GdX2UKGgGR8BQwxQFcIJJaAdLXGgIR0BHuClzltCRdX2UKGgGR8BIiBcAzYVZaAdLZmgIR0BHuXp4bCJodX2UKGgGR8BIOzJyQxN7aAdLfmgIR0BHuhfBvaUSdX2UKGgGR8BQtg9ic5KfaAdLaWgIR0BHvHiWE9McdX2UKGgGR8BHuIsZpBX0aAdLT2gIR0BHvZ0r9VFQdX2UKGgGR8Bd6PczqKP5aAdLd2gIR0BHvvH1e0HAdX2UKGgGR8BPO2iL2pQ2aAdLWmgIR0BHwXfhuO0cdX2UKGgGR8BJHOnMt9QXaAdLRmgIR0BHwmlZX+2mdX2UKGgGR8BUu2gSOBDpaAdLcWgIR0BHwwiiZfD2dX2UKGgGR8BB5mJFb3XaaAdLYWgIR0BHww0O3DvWdX2UKGgGR8BY525MDfWMaAdLdGgIR0BHyLh73PAwdX2UKGgGR8BdtheC04R3aAdLZ2gIR0BHyZc1O0swdX2UKGgGR8BZpe1v2oNvaAdLQ2gIR0BHyhHskY4ydX2UKGgGR8BZvVWXC0ngaAdLSGgIR0BHz5kCmuTzdX2UKGgGR8BWZeD3/PxAaAdLbGgIR0BH0Rl6JIlMdX2UKGgGR8BE+UCq6vq1aAdLS2gIR0BH0avRqoIfdX2UKGgGR8BdrmwJPZZkaAdLbWgIR0BH0dNN8E3bdX2UKGgGR8BpcsWAPNFCaAdLlGgIR0BH17D/EOy3dX2UKGgGR8BUxEkOZssQaAdLXGgIR0BH1+MqBmPHdX2UKGgGR8A6tYxcmjTKaAdLfmgIR0BH29bgTAWSdX2UKGgGR0AMAkqtozvaaAdLkWgIR0BH3JazNUwSdX2UKGgGR8BKbQSamXPaaAdLfmgIR0BH3InBtUGWdX2UKGgGR8BKvOogmqo7aAdLXmgIR0BH3FEqlP8AdX2UKGgGR8BPgaO5rgwXaAdLR2gIR0BH3YD9wWFfdX2UKGgGR8BBBSiM5wOwaAdLamgIR0BH3pVCHARDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9ob21lL2NoaW4vYW5hY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvaG9tZS9jaGluL2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9ob21lL2NoaW4vYW5hY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvaG9tZS9jaGluL2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.5.0-21-generic-x86_64-with-glibc2.35 # 21~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 9 13:32:52 UTC 2", "Python": "3.10.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9b4102b15d9dd4699d52d573a46dff17f6b37ebaa323d5857f24eb8ff742bd2
|
3 |
+
size 147972
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fda61eada20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fda61eadab0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fda61eadb40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fda61eadbd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fda61eadc60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fda61eadcf0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fda61eadd80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fda61eade10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fda61eadea0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fda61eadf30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fda61eadfc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fda61eae050>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fda61eb8a00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 114688,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1709257256109635960,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEB/k71GO6s/XcmYvrV1qb6MgT+8/ikcvgAAAAAAAAAAWsdIvrd4Kz+jNn++Vl9AvyiX1b1Agmm+AAAAAAAAAABa79C+9BolP5sSX7+FeD6/T6TUPRtfUr4AAAAAAAAAAKC6HT7Sqpk/trhVPvl8K7/pnDM+5iVxPgAAAAAAAAAAzXhrPC+ejj+bC2U9shZGv7N9A756trS9AAAAAAAAAAC6zn0+tjopP1SXET80m2y/oF6uvlI0Mb4AAAAAAAAAAFqvsz09rLQ/Tva8PhsiYb6Kjim9TlNCPQAAAAAAAAAAM16wvaQqsj9OSQq/VJgkvtM+FT2p86m9AAAAAAAAAAAg0YO+IU84P/jzIr9JzVe/O7HavT0Ba74AAAAAAAAAAGbWUDx6ebY/yTu8PYyEEb41ohC+8GVjvgAAAAAAAAAAykjePkpKij6KwC8/x3Wpv9Mm/7xsiK8+AAAAAAAAAAD4UP6++7FuP8vGhb6Jk4O/KHknv1tFsL0AAAAAAAAAAMq/rL4HN7I+0FEavpRJe790FKW+j9MNvgAAAAAAAAAA2nidvie+Gz6CqIk7wjuMv2yMcb4ZCCO9AAAAAAAAAADNjJm9VpO3P1YhN76nA4G+ntXWPGBc470AAAAAAAAAAOaGrz1QvIg/Yo7LPjddWb+HlCS9pvGJvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.1468799999999999,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFWpy9VWCEqMAWyUS1aMAXSUR0BHNOuA7PpqdX2UKGgGR8BFP6hYeT3ZaAdLQ2gIR0BHNtmlImPYdX2UKGgGR8BVrHg9/z8QaAdLYGgIR0BHOPpQk5ZKdX2UKGgGR0AOBhKDkELZaAdLSmgIR0BHO0EPlMh6dX2UKGgGR8BVxWEkB0ZFaAdLh2gIR0BHO6Jhvze5dX2UKGgGR8BYDdOZb6gvaAdLjWgIR0BHPIrOJLuhdX2UKGgGR8BUGjZ13dKvaAdLYmgIR0BHPWYv38GcdX2UKGgGR8BJQhkRSP2gaAdLjWgIR0BHQXsw+MZQdX2UKGgGR8BNGrCemNzbaAdLR2gIR0BHRJI+W4VidX2UKGgGR8BY7pKODJ2daAdLUWgIR0BHR6vicXnAdX2UKGgGR8BHHtdJJ5E/aAdLfmgIR0BHR+JP69CedX2UKGgGR8BUaWseXAuaaAdLXWgIR0BHSM7U5MlDdX2UKGgGR8BGLUJ4SpR5aAdLTGgIR0BHSbp3X7LudX2UKGgGR8BfULMs6JZXaAdLWGgIR0BHSmGmDUVjdX2UKGgGR8BX1zR2KVIJaAdLdWgIR0BHStuUD+zddX2UKGgGR8BSeNKdxyXEaAdLQ2gIR0BHTXiJfpljdX2UKGgGR8BQ2Isqaw2VaAdLRmgIR0BHUFqzqrzYdX2UKGgGR8BYb7qlgtvoaAdLemgIR0BHUe717IDHdX2UKGgGR8BaZq/20zCUaAdLiWgIR0BHU3SBshxHdX2UKGgGR8BLbZ5qubI+aAdLVWgIR0BHU6guh9LIdX2UKGgGR8BcZd9tuUD/aAdLaWgIR0BHVZvtMPBjdX2UKGgGR8BZIHg5zYEoaAdLdWgIR0BHVrfDUExJdX2UKGgGR8BUXBPCVKPGaAdLQmgIR0BHWZPl+3H8dX2UKGgGR8BHXbE5yU9qaAdLcGgIR0BHWeKsMiKSdX2UKGgGR8BSuWdiDujRaAdLdWgIR0BHYUgKWszVdX2UKGgGR8BWytkSVW0aaAdLYmgIR0BHZFBQemvXdX2UKGgGR8BQ2/mDDjzaaAdLR2gIR0BHZVSGahHtdX2UKGgGR8BQ2cIu5BkaaAdLZGgIR0BHZaJIlMRIdX2UKGgGR8BBZ71Iy0rtaAdLaGgIR0BHZz/6wdKedX2UKGgGR8Bi0WuieumraAdLc2gIR0BHaFxXGOuJdX2UKGgGR8BG+N0NjLB9aAdLXGgIR0BHabr9l2/0dX2UKGgGR8BfcH1J17pnaAdLi2gIR0BHavVNHpbEdX2UKGgGR8BczegUUO/daAdLeGgIR0BHbpAlfJFLdX2UKGgGR8BTZVSS/0ulaAdLWGgIR0BHbzQmeDnOdX2UKGgGR8BNTLk8zQ/paAdLUmgIR0BHcJTl1bJPdX2UKGgGR8BluT7TDwYtaAdLlWgIR0BHcQOe8PFvdX2UKGgGR8BPTWl2vB8AaAdLdWgIR0BHc+FtbcGkdX2UKGgGR8BTErVawD/3aAdLTmgIR0BHdzqB3A2ydX2UKGgGR8Biu6j8DSw4aAdLg2gIR0BHd5lWfbsXdX2UKGgGR8BSlZWvKU3XaAdLamgIR0BHd3aBZpztdX2UKGgGR8BTw+ejEehgaAdLfmgIR0BHeHIQvpQldX2UKGgGR8BQIG9pRGc4aAdLS2gIR0BHfjCP6sQvdX2UKGgGR8BGAY7Rv3rVaAdLRmgIR0BHfgY51eSkdX2UKGgGR8BYyNMbm2b5aAdLWGgIR0BHf2jXWe6JdX2UKGgGR8BQTOHSF49paAdLS2gIR0BHgvXTVlPKdX2UKGgGR8BKBaxHG0eEaAdLTWgIR0BHhCQ1aW5ZdX2UKGgGR8BUQnAIppevaAdLc2gIR0BHhCj1wo9cdX2UKGgGR8BUiQqVhTfjaAdLTWgIR0BHhfM4cWCVdX2UKGgGR8BShCpvP1L8aAdLdWgIR0BHheZG8VYZdX2UKGgGR8BQt7MxGlQ/aAdLbWgIR0BHhll9Sde6dX2UKGgGR8BSr5m29crzaAdLQ2gIR0BHiUj1PFefdX2UKGgGR8BQ/f8hs67vaAdLR2gIR0BHi4Y77sOYdX2UKGgGR8BnJAcWCVbBaAdLkWgIR0BHjQeNkvsadX2UKGgGR8BIfV0DEFW5aAdLYGgIR0BHjeY+jdpJdX2UKGgGR8BJEcJ+lTFVaAdLXGgIR0BHkD9n9NvgdX2UKGgGR8Ba5neBQN1AaAdLgmgIR0BHk7G3nZCfdX2UKGgGR8BIsD/VAiV0aAdLO2gIR0BHk/WlMyrQdX2UKGgGR8A9bJkoWpIdaAdLUmgIR0BHlZggHNX6dX2UKGgGR8BfKkzKs+3ZaAdLdWgIR0BHlyro4dZJdX2UKGgGR8BRJkjC53C9aAdLT2gIR0BHmwsoUi6hdX2UKGgGR8AqHoIOYplSaAdLVmgIR0BHnR+SbH6udX2UKGgGR8BRwp6Y3Ns4aAdLdmgIR0BHnhX0XgtOdX2UKGgGR8BgztMsYl6aaAdLZmgIR0BHnrBsQ/X5dX2UKGgGR8Bf1R6OYIBzaAdLemgIR0BHn3AmAskIdX2UKGgGR8BF+ZElVtGeaAdLdWgIR0BHo94u9OARdX2UKGgGR8BgH9KRMewLaAdLe2gIR0BHp71yvLX+dX2UKGgGR8BCWI9TxXnyaAdLSmgIR0BHqG7SRbKSdX2UKGgGR8BYte7YkE9uaAdLc2gIR0BHqOIyj59FdX2UKGgGR8BSROlO45LiaAdLW2gIR0BHqV/DtPYWdX2UKGgGR8BRpGVVxS5zaAdLd2gIR0BHrcnE2pAEdX2UKGgGR8BXOdPpIMBqaAdLemgIR0BHr4pUgjhUdX2UKGgGR8BdMiiItUXIaAdLgmgIR0BHr2ll9SdfdX2UKGgGR8BRPD9sJpnIaAdLbmgIR0BHtBBiTdLydX2UKGgGR8A2OR3NcGC7aAdLW2gIR0BHtHhsImgKdX2UKGgGR8BXI8vIwM6SaAdLeGgIR0BHtQLE1l5GdX2UKGgGR8BQwxQFcIJJaAdLXGgIR0BHuClzltCRdX2UKGgGR8BIiBcAzYVZaAdLZmgIR0BHuXp4bCJodX2UKGgGR8BIOzJyQxN7aAdLfmgIR0BHuhfBvaUSdX2UKGgGR8BQtg9ic5KfaAdLaWgIR0BHvHiWE9McdX2UKGgGR8BHuIsZpBX0aAdLT2gIR0BHvZ0r9VFQdX2UKGgGR8Bd6PczqKP5aAdLd2gIR0BHvvH1e0HAdX2UKGgGR8BPO2iL2pQ2aAdLWmgIR0BHwXfhuO0cdX2UKGgGR8BJHOnMt9QXaAdLRmgIR0BHwmlZX+2mdX2UKGgGR8BUu2gSOBDpaAdLcWgIR0BHwwiiZfD2dX2UKGgGR8BB5mJFb3XaaAdLYWgIR0BHww0O3DvWdX2UKGgGR8BY525MDfWMaAdLdGgIR0BHyLh73PAwdX2UKGgGR8BdtheC04R3aAdLZ2gIR0BHyZc1O0swdX2UKGgGR8BZpe1v2oNvaAdLQ2gIR0BHyhHskY4ydX2UKGgGR8BZvVWXC0ngaAdLSGgIR0BHz5kCmuTzdX2UKGgGR8BWZeD3/PxAaAdLbGgIR0BH0Rl6JIlMdX2UKGgGR8BE+UCq6vq1aAdLS2gIR0BH0avRqoIfdX2UKGgGR8BdrmwJPZZkaAdLbWgIR0BH0dNN8E3bdX2UKGgGR8BpcsWAPNFCaAdLlGgIR0BH17D/EOy3dX2UKGgGR8BUxEkOZssQaAdLXGgIR0BH1+MqBmPHdX2UKGgGR8A6tYxcmjTKaAdLfmgIR0BH29bgTAWSdX2UKGgGR0AMAkqtozvaaAdLkWgIR0BH3JazNUwSdX2UKGgGR8BKbQSamXPaaAdLfmgIR0BH3InBtUGWdX2UKGgGR8BKvOogmqo7aAdLXmgIR0BH3FEqlP8AdX2UKGgGR8BPgaO5rgwXaAdLR2gIR0BH3YD9wWFfdX2UKGgGR8BBBSiM5wOwaAdLamgIR0BH3pVCHARDdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 28,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23e09b30e85a21e74914d53f39eb9e2ac6a4e19c3a2b147e3439c538588b06d3
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c0b46f0da116c0efc36e5f676ba3bf6498bb29a33b7a25974827b146bd4f08c
|
3 |
size 43762
|
replay.mp4
ADDED
Binary file (205 kB). View file
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -120.90077188459108, "std_reward": 57.59925817808862, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-01T09:42:16.462185"}
|