File size: 10,838 Bytes
2d18c76 5c1c4fe 5c6605a 5c1c4fe 5c6605a 2d18c76 5b0d62b 9133100 cd42135 2d18c76 cd42135 2d18c76 9133100 2d18c76 cd42135 9d8dbcc 2d18c76 cd42135 62a4416 2d18c76 d7e71fb 2d18c76 62a4416 2d18c76 62a4416 2d18c76 62a4416 4b39cbd 62a4416 2d18c76 9452e17 2d18c76 9452e17 2d18c76 5b0d62b ff6289f 5b0d62b 2d18c76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
---
language:
- ace
- acm
- acq
- aeb
- af
- ajp
- ak
- als
- am
- apc
- ar
- ars
- ary
- arz
- as
- ast
- awa
- ayr
- azb
- azj
- ba
- bm
- ban
- be
- bem
- bn
- bho
- bjn
- bo
- bs
- bug
- bg
- ca
- ceb
- cs
- cjk
- ckb
- crh
- cy
- da
- de
- dik
- dyu
- dz
- el
- en
- eo
- et
- eu
- ee
- fo
- fj
- fi
- fon
- fr
- fur
- fuv
- gaz
- gd
- ga
- gl
- gn
- gu
- ht
- ha
- he
- hi
- hne
- hr
- hu
- hy
- ig
- ilo
- id
- is
- it
- jv
- ja
- kab
- kac
- kam
- kn
- ks
- ka
- kk
- kbp
- kea
- khk
- km
- ki
- rw
- ky
- kmb
- kmr
- knc
- kg
- ko
- lo
- lij
- li
- ln
- lt
- lmo
- ltg
- lb
- lua
- lg
- luo
- lus
- lvs
- mag
- mai
- ml
- mar
- min
- mk
- mt
- mni
- mos
- mi
- my
- nl
- nn
- nb
- npi
- nso
- nus
- ny
- oc
- ory
- pag
- pa
- pap
- pbt
- pes
- plt
- pl
- pt
- prs
- quy
- ro
- rn
- ru
- sg
- sa
- sat
- scn
- shn
- si
- sk
- sl
- sm
- sn
- sd
- so
- st
- es
- sc
- sr
- ss
- su
- sv
- swh
- szl
- ta
- taq
- tt
- te
- tg
- tl
- th
- ti
- tpi
- tn
- ts
- tk
- tum
- tr
- tw
- tzm
- ug
- uk
- umb
- ur
- uzn
- vec
- vi
- war
- wo
- xh
- ydd
- yo
- yue
- zh
- zsm
- zu
language_details: >-
ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab,
aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab,
asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl,
bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn,
bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn,
cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn,
dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn,
ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn,
fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr,
hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn,
hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn,
jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva,
kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr,
kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn,
lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn,
ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva,
mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn,
mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn,
nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn,
gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn,
prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn,
san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn,
smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn,
srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn,
tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi,
taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn,
tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab,
uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr,
yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn
license: mit
metrics:
- bleu
datasets:
- mozilla-foundation/common_voice_8_0
pipeline_tag: automatic-speech-recognition
tags:
- zeroswot
- speech translation
- zero-shot
- end-to-end
- nllb
- wav2vec2
---
# ZeroSwot ✨🤖✨
<!-- <div style='display:flex; gap: 0.25rem; '>
<a href='https://arxiv.org/abs/2402.10422'><img src='https://img.shields.io/badge/paper-PDF-green'></a>
<a href='https://github.com/mt-upc/ZeroSwot/blob/main/LICENSE'><img src='https://img.shields.io/badge/License-MIT-blue.svg'></a>
<a href='https://github.com/mt-upc/ZeroSwot'><img src='https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white'></a>
</div> -->
ZeroSwot is a state-of-the-art zero-shot end-to-end Speech Translation system.
<div align=center><img src="resources/intro.png" height="65%" width="65%"/></div>
The model is created by adapting a wav2vec2.0-based encoder to the embedding space of NLLB, using a novel subword compression module and Optimal Transport, while only utilizing ASR data. It thus enables **Zero-shot E2E Speech Translation to all the 200 languages supported by NLLB**.
For more details please refer to our [paper](https://arxiv.org/abs/2402.10422) and the [original repo](https://github.com/mt-upc/ZeroSwot) build on fairseq.
## Architecture
The compression module is a light-weight transformer that takes as input the hidden state of wav2vec2.0 and the corresponding CTC predictions, and compresses them to subword-like embeddings similar to those expected from NLLB and aligns them using Optimal Transport. For inference we simply pass the output of the speech encoder to NLLB encoder.
<div align=center><img src="resources/methodology.png" height="120%" width="120%"/></div>
## Version
This version of ZeroSwot is trained with ASR data from CommonVoice, and adapted [wav2vec2.0-large](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) to the [nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) model.
We have more versions available:
| Models | ASR data | NLLB version |
|:------:|:--------:|:------------:|
| [ZeroSwot-Medium_asr-mustc](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-mustc_en-to-200) | MuST-C v1.0 | [distilled-600M original](https://huggingface.co/facebook/nllb-200-distilled-600M)|
| [ZeroSwot-Medium_asr-mustc_mt-mustc](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-mustc_mt-mustc_en-to-8) | MuST-C v1.0 | [distilled-600M finetuned w/ MuST-C](https://huggingface.co/johntsi/nllb-200-distilled-600M_mustc_en-to-8) |
| [ZeroSwot-Large_asr-mustc](https://huggingface.co/johntsi/ZeroSwot-Large_asr-mustc_en-to-200) | MuST-C v1.0 | [distilled-1.3B original](https://huggingface.co/facebook/nllb-200-distilled-1.3B) |
| [ZeroSwot-Large_asr-mustc_mt-mustc](https://huggingface.co/johntsi/ZeroSwot-Large_asr-mustc_mt-mustc_en-to-8) | MuST-C v1.0 | [distilled-1.3B finetuned w/ MuST-C](https://huggingface.co/johntsi/nllb-200-distilled-1.3B_mustc_en-to-8) |
| [ZeroSwot-Medium_asr-cv](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-cv_en-to-200) | CommonVoice | [distilled-600M original](https://huggingface.co/facebook/nllb-200-distilled-600M)|
| [ZeroSwot-Medium_asr-cv_mt-covost2](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-cv_mt-covost2_en-to-15) | CommonVoice | [distilled-600M finetuned w/ CoVoST2](https://huggingface.co/johntsi/nllb-200-distilled-600M_covost2_en-to-15) |
| [ZeroSwot-Large_asr-cv](https://huggingface.co/johntsi/ZeroSwot-Large_asr-cv_en-to-200) | CommonVoice | [distilled-1.3B original](https://huggingface.co/facebook/nllb-200-distilled-1.3B) |
| [ZeroSwot-Large_asr-cv_mt-covost2](https://huggingface.co/johntsi/ZeroSwot-Large_asr-cv_mt-covost2_en-to-15) | CommonVoice | [distilled-1.3B finetuned w/ CoVoST2](https://huggingface.co/johntsi/nllb-200-distilled-1.3B_covost2_en-to-15) |
## Usage
The model is tested with python 3.9.16 and Transformer v4.41.2. Install also torchaudio and sentencepiece for processing.
```bash
pip install transformers torchaudio sentencepiece
```
```python
from transformers import Wav2Vec2Processor, NllbTokenizer, AutoModel, AutoModelForSeq2SeqLM
import torchaudio
def load_and_resample_audio(audio_path, target_sr=16000):
audio, orig_freq = torchaudio.load(audio_path)
if orig_freq != target_sr:
audio = torchaudio.functional.resample(audio, orig_freq=orig_freq, new_freq=target_sr)
audio = audio.squeeze(0).numpy()
return audio
# Load processors and tokenizers
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
# Load ZeroSwot Encoder
commit_hash = "eafabee295ea1c8b45483d1fd26bd747d9a7d937"
zeroswot_encoder = AutoModel.from_pretrained(
"johntsi/ZeroSwot-Medium_asr-cv_en-to-200", trust_remote_code=True, revision=commit_hash,
)
zeroswot_encoder.eval()
zeroswot_encoder.to("cuda")
# Load NLLB Model
nllb_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
nllb_model.eval()
nllb_model.to("cuda")
# Load audio file
audio = load_and_resample_audio(path_to_audio_file) # you can use "resources/sample.wav" for testing
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").to("cuda")
# translation to German
compressed_embeds, attention_mask = zeroswot_encoder(**input_values)
predicted_ids = nllb_model.generate(
inputs_embeds=compressed_embeds,
attention_mask=attention_mask,
forced_bos_token_id=tokenizer.lang_code_to_id["deu_Latn"],
num_beams=5,
)
translation = tokenizer.decode(predicted_ids[0], skip_special_tokens=True)
print(translation)
```
## Results
BLEU scores on CoVoST-2 test compared to supervised SOTA models [XLS-R-1B](https://huggingface.co/facebook/wav2vec2-xls-r-1b) and [SeamlessM4T-Medium](https://huggingface.co/facebook/seamless-m4t-medium). You can refer to Table 5 of the Results section in the paper for more details.
| Models | ZS | Size (B) | Ar | Ca | Cy | De | Et | Fa | Id | Ja | Lv | Mn | Sl | Sv | Ta | Tr | Zh | Average |
|:--------------:|:----:|:----------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:-------:|
| [XLS-R-1B](https://huggingface.co/facebook/wav2vec2-xls-r-1b) | ✗ | 1.0 | 19.2 | 32.1 | **31.8** | 26.2 | 22.4 | 21.3 | 30.3 | 39.9 | 22.0 | 14.9 | 25.4 | 32.3 | 18.1 | 17.1 | 36.7 | 26.0 |
| [SeamlessM4T-Medium](https://huggingface.co/facebook/seamless-m4t-medium) | ✗ | 1.2 | 20.8 | 37.3 | 29.9 | **31.4** | 23.3 | 17.2 | 34.8 | 37.5 | 19.5 | 12.9 | 29.0 | 37.3 | 18.9 | **19.8** | 30.0 | 26.6 |
| [ZeroSwot-M_asr-cv](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-cv_en-to-200) | ✓ | 0.35/0.95 | 17.6 | 32.5 | 18.0 | 29.9 | 20.4 | 16.3 | 32.4 | 32.0 | 13.3 | 10.0 | 25.2 | 34.4 | 17.8 | 15.6 | 30.5 | 23.1 |
| [ZeroSwot-M_asr-cv_mt-covost2](https://huggingface.co/johntsi/ZeroSwot-Medium_asr-cv_mt-covost2_en-to-200) | ✓ | 0.35/0.95 | **24.4** | **38.7** | 28.8 | 31.2 | **26.2** | **26.0** | **36.0** | **46.0** | **24.8** | **19.0** | **31.6** | **37.8** | **24.4** | 18.6 | **39.0** | **30.2** |
## Citation
If you find ZeroSwot useful for your research, please cite our paper :)
```
@misc{tsiamas2024pushing,
title={{Pushing the Limits of Zero-shot End-to-End Speech Translation}},
author={Ioannis Tsiamas and Gerard I. Gállego and José A. R. Fonollosa and Marta R. Costa-jussà},
year={2024},
eprint={2402.10422},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |