File size: 2,508 Bytes
ae1caa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gc
import os
from typing import TypeAlias
import torch
from PIL.Image import Image
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny
from huggingface_hub.constants import HF_HUB_CACHE
from pipelines.models import TextToImageRequest
from torch import Generator
from torchao.quantization import quantize_, int8_weight_only
from transformers import T5EncoderModel, CLIPTextModel
Pipeline: TypeAlias = FluxPipeline
torch.backends.cudnn.benchmark = True
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"
TinyVAE = "madebyollin/taef1"
TinyVAE_REV = "2d552378e58c9c94201075708d7de4e1163b2689"
def load_pipeline() -> Pipeline:
path = os.path.join(HF_HUB_CACHE, "models--jokerbit--flux.1-schnell-Robert-int8wo/snapshots/5ef0012f11a863e5111ec56540302a023bc8587b/transformer")
transformer = FluxTransformer2DModel.from_pretrained(
path,
use_safetensors=False,
local_files_only=True,
torch_dtype=torch.bfloat16)
pipeline = FluxPipeline.from_pretrained(
CHECKPOINT,
revision=REVISION,
transformer=transformer,
local_files_only=True,
torch_dtype=torch.bfloat16,
).to("cuda")
# pipeline.vae.to(memory_format=torch.channels_last)
quantize_(pipeline.vae, int8_weight_only())
# pipeline.vae.compile()
pipeline.to("cuda")
for _ in range(2):
pipeline("cat", num_inference_steps=4)
return pipeline
@torch.inference_mode()
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: torch.Generator) -> Image:
return pipeline(
request.prompt,
generator=generator,
guidance_scale=0.0,
num_inference_steps=4,
max_sequence_length=256,
height=request.height,
width=request.width,
).images[0]
if __name__ == "__main__":
from time import perf_counter
PROMPT = 'martyr, semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
request = TextToImageRequest(prompt=PROMPT,
height=None,
width=None,
seed=666)
start_time = perf_counter()
pipe_ = load_pipeline()
stop_time = perf_counter()
print(f"Pipeline is loaded in {stop_time - start_time}s")
for _ in range(4):
start_time = perf_counter()
infer(request, pipe_)
stop_time = perf_counter()
print(f"Request in {stop_time - start_time}s")
|