Upload src/pipeline.py with huggingface_hub
Browse files- src/pipeline.py +4 -4
src/pipeline.py
CHANGED
@@ -55,17 +55,17 @@ def load_pipeline() -> Pipeline:
|
|
55 |
|
56 |
pipeline.to(memory_format=torch.channels_last)
|
57 |
pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=False)
|
58 |
-
quantize_(pipeline.vae, int8_weight_only())
|
59 |
-
pipeline.vae = torch.compile(pipeline.vae, fullgraph=True, mode="max-autotune")
|
60 |
|
61 |
PROMPT = 'semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
|
62 |
-
with torch.
|
63 |
for _ in range(4):
|
64 |
pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
|
65 |
torch.cuda.empty_cache()
|
66 |
return pipeline
|
67 |
|
68 |
-
@torch.
|
69 |
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: torch.Generator) -> Image:
|
70 |
|
71 |
return pipeline(
|
|
|
55 |
|
56 |
pipeline.to(memory_format=torch.channels_last)
|
57 |
pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=False)
|
58 |
+
# quantize_(pipeline.vae, int8_weight_only())
|
59 |
+
# pipeline.vae = torch.compile(pipeline.vae, fullgraph=True, mode="max-autotune")
|
60 |
|
61 |
PROMPT = 'semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
|
62 |
+
with torch.no_grad():
|
63 |
for _ in range(4):
|
64 |
pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
|
65 |
torch.cuda.empty_cache()
|
66 |
return pipeline
|
67 |
|
68 |
+
@torch.no_grad()
|
69 |
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: torch.Generator) -> Image:
|
70 |
|
71 |
return pipeline(
|