Upload src/pipeline.py with huggingface_hub
Browse files- src/pipeline.py +15 -7
src/pipeline.py
CHANGED
@@ -4,21 +4,23 @@ from typing import TypeAlias
|
|
4 |
|
5 |
import torch
|
6 |
from PIL.Image import Image
|
7 |
-
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny
|
8 |
from huggingface_hub.constants import HF_HUB_CACHE
|
9 |
from pipelines.models import TextToImageRequest
|
10 |
from torch import Generator
|
11 |
from torchao.quantization import quantize_, int8_weight_only
|
12 |
-
from transformers import T5EncoderModel, CLIPTextModel
|
|
|
13 |
|
14 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
15 |
Pipeline: TypeAlias = FluxPipeline
|
|
|
|
|
16 |
torch._inductor.config.conv_1x1_as_mm = True
|
17 |
torch._inductor.config.coordinate_descent_tuning = True
|
18 |
torch._inductor.config.epilogue_fusion = False
|
19 |
torch._inductor.config.coordinate_descent_check_all_directions = True
|
20 |
-
|
21 |
-
|
22 |
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
23 |
REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"
|
24 |
|
@@ -33,7 +35,7 @@ def load_pipeline() -> Pipeline:
|
|
33 |
use_safetensors=False,
|
34 |
local_files_only=True,
|
35 |
torch_dtype=torch.bfloat16)
|
36 |
-
|
37 |
pipeline = FluxPipeline.from_pretrained(
|
38 |
CHECKPOINT,
|
39 |
revision=REVISION,
|
@@ -41,9 +43,14 @@ def load_pipeline() -> Pipeline:
|
|
41 |
local_files_only=True,
|
42 |
torch_dtype=torch.bfloat16,
|
43 |
)
|
|
|
44 |
pipeline.transformer.to(memory_format=torch.channels_last)
|
|
|
|
|
|
|
45 |
pipeline.to("cuda")
|
46 |
-
|
|
|
47 |
pipeline("cat", num_inference_steps=4)
|
48 |
|
49 |
return pipeline
|
@@ -78,3 +85,4 @@ if __name__ == "__main__":
|
|
78 |
infer(request, pipe_)
|
79 |
stop_time = perf_counter()
|
80 |
print(f"Request in {stop_time - start_time}s")
|
|
|
|
4 |
|
5 |
import torch
|
6 |
from PIL.Image import Image
|
7 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny, DiffusionPipeline
|
8 |
from huggingface_hub.constants import HF_HUB_CACHE
|
9 |
from pipelines.models import TextToImageRequest
|
10 |
from torch import Generator
|
11 |
from torchao.quantization import quantize_, int8_weight_only
|
12 |
+
from transformers import T5EncoderModel, CLIPTextModel, logging
|
13 |
+
|
14 |
|
|
|
15 |
Pipeline: TypeAlias = FluxPipeline
|
16 |
+
torch.backends.cudnn.benchmark = True
|
17 |
+
torch.backends.cudnn.benchmark = True
|
18 |
torch._inductor.config.conv_1x1_as_mm = True
|
19 |
torch._inductor.config.coordinate_descent_tuning = True
|
20 |
torch._inductor.config.epilogue_fusion = False
|
21 |
torch._inductor.config.coordinate_descent_check_all_directions = True
|
22 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
23 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
24 |
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
25 |
REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"
|
26 |
|
|
|
35 |
use_safetensors=False,
|
36 |
local_files_only=True,
|
37 |
torch_dtype=torch.bfloat16)
|
38 |
+
|
39 |
pipeline = FluxPipeline.from_pretrained(
|
40 |
CHECKPOINT,
|
41 |
revision=REVISION,
|
|
|
43 |
local_files_only=True,
|
44 |
torch_dtype=torch.bfloat16,
|
45 |
)
|
46 |
+
|
47 |
pipeline.transformer.to(memory_format=torch.channels_last)
|
48 |
+
pipeline.vae.to(memory_format=torch.channels_last)
|
49 |
+
# quantize_(pipeline.vae, int8_weight_only())
|
50 |
+
pipeline.vae = torch.compile(pipeline.vae, fullgraph=True, mode="max-autotune")
|
51 |
pipeline.to("cuda")
|
52 |
+
|
53 |
+
for _ in range(2):
|
54 |
pipeline("cat", num_inference_steps=4)
|
55 |
|
56 |
return pipeline
|
|
|
85 |
infer(request, pipe_)
|
86 |
stop_time = perf_counter()
|
87 |
print(f"Request in {stop_time - start_time}s")
|
88 |
+
|