import gc import os from typing import TypeAlias import torch from PIL.Image import Image from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny, DiffusionPipeline from huggingface_hub.constants import HF_HUB_CACHE from pipelines.models import TextToImageRequest from torch import Generator from torchao.quantization import quantize_, int8_weight_only from transformers import T5EncoderModel, CLIPTextModel, logging import torch._dynamo torch._dynamo.config.suppress_errors = True Pipeline: TypeAlias = FluxPipeline torch.backends.cudnn.benchmark = True torch._inductor.config.conv_1x1_as_mm = True torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.epilogue_fusion = False torch._inductor.config.coordinate_descent_check_all_directions = True os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" os.environ["TOKENIZERS_PARALLELISM"] = "True" CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo" REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b" TinyVAE = "madebyollin/taef1" TinyVAE_REV = "2d552378e58c9c94201075708d7de4e1163b2689" def load_pipeline() -> Pipeline: path = os.path.join(HF_HUB_CACHE, "models--jokerbit--flux.1-schnell-Robert-int8wo/snapshots/5ef0012f11a863e5111ec56540302a023bc8587b/transformer") transformer = FluxTransformer2DModel.from_pretrained( path, use_safetensors=False, local_files_only=True, torch_dtype=torch.bfloat16) vae = AutoencoderTiny.from_pretrained( TinyVAE, revision=TinyVAE_REV, local_files_only=True, torch_dtype=torch.bfloat16) pipeline = FluxPipeline.from_pretrained( CHECKPOINT, revision=REVISION, transformer=transformer, # vae=vae, local_files_only=True, torch_dtype=torch.bfloat16, ).to("cuda") pipeline.to(memory_format=torch.channels_last) pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune") quantize_(pipeline.vae, int8_weight_only()) pipeline.vae = torch.compile(pipeline.vae, mode="max-autotune") # pipeline.set_progress_bar_config(disable=True) PROMPT = 'semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle' with torch.no_grad(): for _ in range(4): pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) torch.cuda.empty_cache() return pipeline @torch.no_grad() def infer(request: TextToImageRequest, pipeline: Pipeline, generator: torch.Generator) -> Image: return pipeline( request.prompt, generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, ).images[0] if __name__ == "__main__": from time import perf_counter PROMPT = 'martyr, semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle' request = TextToImageRequest(prompt=PROMPT, height=None, width=None, seed=666) generator = torch.Generator(device="cuda") start_time = perf_counter() pipe_ = load_pipeline() stop_time = perf_counter() print(f"Pipeline is loaded in {stop_time - start_time}s") for _ in range(4): start_time = perf_counter() infer(request, pipe_, generator=generator.manual_seed(request.seed)) stop_time = perf_counter() print(f"Request in {stop_time - start_time}s")