Upload src/pipeline.py with huggingface_hub
Browse files- src/pipeline.py +13 -6
src/pipeline.py
CHANGED
@@ -28,20 +28,27 @@ def load_pipeline() -> Pipeline:
|
|
28 |
path,
|
29 |
use_safetensors=False,
|
30 |
local_files_only=True,
|
31 |
-
torch_dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
pipeline = FluxPipeline.from_pretrained(
|
33 |
CHECKPOINT,
|
34 |
revision=REVISION,
|
35 |
transformer=transformer,
|
|
|
36 |
local_files_only=True,
|
37 |
torch_dtype=torch.bfloat16,
|
38 |
-
)
|
39 |
|
40 |
-
pipeline.
|
41 |
-
|
42 |
-
# pipeline.vae.compile()
|
43 |
pipeline.to("cuda")
|
44 |
-
|
|
|
45 |
pipeline("cat", num_inference_steps=4)
|
46 |
|
47 |
return pipeline
|
|
|
28 |
path,
|
29 |
use_safetensors=False,
|
30 |
local_files_only=True,
|
31 |
+
torch_dtype=torch.bfloat16).to(memory_format=torch.channels_last)
|
32 |
+
vae = AutoencoderTiny.from_pretrained(
|
33 |
+
TinyVAE,
|
34 |
+
revision=TinyVAE_REV,
|
35 |
+
local_files_only=True,
|
36 |
+
torch_dtype=torch.bfloat16
|
37 |
+
)
|
38 |
pipeline = FluxPipeline.from_pretrained(
|
39 |
CHECKPOINT,
|
40 |
revision=REVISION,
|
41 |
transformer=transformer,
|
42 |
+
vae=vae,
|
43 |
local_files_only=True,
|
44 |
torch_dtype=torch.bfloat16,
|
45 |
+
)
|
46 |
|
47 |
+
pipeline.to(memory_format=torch.channels_last)
|
48 |
+
pipeline.enable_vae_slicing()
|
|
|
49 |
pipeline.to("cuda")
|
50 |
+
# quantize_(pipeline.vae, int8_weight_only())
|
51 |
+
for _ in range(4):
|
52 |
pipeline("cat", num_inference_steps=4)
|
53 |
|
54 |
return pipeline
|