Upload src/pipeline.py with huggingface_hub
Browse files- src/pipeline.py +29 -13
src/pipeline.py
CHANGED
@@ -4,18 +4,26 @@ from typing import TypeAlias
|
|
4 |
|
5 |
import torch
|
6 |
from PIL.Image import Image
|
7 |
-
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny
|
8 |
from huggingface_hub.constants import HF_HUB_CACHE
|
9 |
from pipelines.models import TextToImageRequest
|
10 |
from torch import Generator
|
11 |
from torchao.quantization import quantize_, int8_weight_only
|
12 |
-
from transformers import T5EncoderModel, CLIPTextModel
|
13 |
-
|
|
|
14 |
|
15 |
Pipeline: TypeAlias = FluxPipeline
|
16 |
-
|
17 |
torch.backends.cudnn.benchmark = True
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
19 |
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
20 |
REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"
|
21 |
|
@@ -24,12 +32,12 @@ TinyVAE_REV = "2d552378e58c9c94201075708d7de4e1163b2689"
|
|
24 |
|
25 |
|
26 |
def load_pipeline() -> Pipeline:
|
27 |
-
path = os.path.join(HF_HUB_CACHE, "models--jokerbit--flux.1-schnell-Robert-int8wo/snapshots/5ef0012f11a863e5111ec56540302a023bc8587b/transformer")
|
28 |
transformer = FluxTransformer2DModel.from_pretrained(
|
29 |
path,
|
30 |
use_safetensors=False,
|
31 |
local_files_only=True,
|
32 |
-
torch_dtype=torch.bfloat16)
|
33 |
|
34 |
pipeline = FluxPipeline.from_pretrained(
|
35 |
CHECKPOINT,
|
@@ -37,13 +45,19 @@ def load_pipeline() -> Pipeline:
|
|
37 |
transformer=transformer,
|
38 |
local_files_only=True,
|
39 |
torch_dtype=torch.bfloat16,
|
40 |
-
)
|
41 |
-
pipeline.vae = torch.compile(pipeline.vae, mode="max-autotune")
|
42 |
-
pipeline.to("cuda")
|
43 |
-
|
44 |
-
for _ in range(4):
|
45 |
-
pipeline("cat", num_inference_steps=4)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
return pipeline
|
48 |
|
49 |
@torch.inference_mode()
|
@@ -67,12 +81,14 @@ if __name__ == "__main__":
|
|
67 |
height=None,
|
68 |
width=None,
|
69 |
seed=666)
|
|
|
70 |
start_time = perf_counter()
|
71 |
pipe_ = load_pipeline()
|
72 |
stop_time = perf_counter()
|
73 |
print(f"Pipeline is loaded in {stop_time - start_time}s")
|
74 |
for _ in range(4):
|
75 |
start_time = perf_counter()
|
76 |
-
infer(request, pipe_)
|
77 |
stop_time = perf_counter()
|
78 |
print(f"Request in {stop_time - start_time}s")
|
|
|
|
4 |
|
5 |
import torch
|
6 |
from PIL.Image import Image
|
7 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny, DiffusionPipeline
|
8 |
from huggingface_hub.constants import HF_HUB_CACHE
|
9 |
from pipelines.models import TextToImageRequest
|
10 |
from torch import Generator
|
11 |
from torchao.quantization import quantize_, int8_weight_only
|
12 |
+
from transformers import T5EncoderModel, CLIPTextModel, logging
|
13 |
+
import torch._dynamo
|
14 |
+
torch._dynamo.config.suppress_errors = True
|
15 |
|
16 |
Pipeline: TypeAlias = FluxPipeline
|
17 |
+
|
18 |
torch.backends.cudnn.benchmark = True
|
19 |
+
torch._inductor.config.conv_1x1_as_mm = True
|
20 |
+
torch._inductor.config.coordinate_descent_tuning = True
|
21 |
+
torch._inductor.config.epilogue_fusion = False
|
22 |
+
torch._inductor.config.coordinate_descent_check_all_directions = True
|
23 |
|
24 |
+
|
25 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
26 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
27 |
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
28 |
REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"
|
29 |
|
|
|
32 |
|
33 |
|
34 |
def load_pipeline() -> Pipeline:
|
35 |
+
path = os.path.join(HF_HUB_CACHE, "models--jokerbit--flux.1-schnell-Robert-int8wo/snapshots/5ef0012f11a863e5111ec56540302a023bc8587b/transformer")
|
36 |
transformer = FluxTransformer2DModel.from_pretrained(
|
37 |
path,
|
38 |
use_safetensors=False,
|
39 |
local_files_only=True,
|
40 |
+
torch_dtype=torch.bfloat16)
|
41 |
|
42 |
pipeline = FluxPipeline.from_pretrained(
|
43 |
CHECKPOINT,
|
|
|
45 |
transformer=transformer,
|
46 |
local_files_only=True,
|
47 |
torch_dtype=torch.bfloat16,
|
48 |
+
).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
pipeline.transformer.to(memory_format=torch.channels_last)
|
51 |
+
pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=False)
|
52 |
+
pipeline.vae.to(memory_format=torch.channels_last)
|
53 |
+
quantize_(pipeline.vae, int8_weight_only())
|
54 |
+
pipeline.vae = torch.compile(pipeline.vae, fullgraph=True, mode="max-autotune")
|
55 |
+
|
56 |
+
PROMPT = 'semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
|
57 |
+
with torch.inference_mode():
|
58 |
+
for _ in range(4):
|
59 |
+
pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
|
60 |
+
torch.cuda.empty_cache()
|
61 |
return pipeline
|
62 |
|
63 |
@torch.inference_mode()
|
|
|
81 |
height=None,
|
82 |
width=None,
|
83 |
seed=666)
|
84 |
+
generator = torch.Generator(device="cuda")
|
85 |
start_time = perf_counter()
|
86 |
pipe_ = load_pipeline()
|
87 |
stop_time = perf_counter()
|
88 |
print(f"Pipeline is loaded in {stop_time - start_time}s")
|
89 |
for _ in range(4):
|
90 |
start_time = perf_counter()
|
91 |
+
infer(request, pipe_, generator=generator.manual_seed(request.seed))
|
92 |
stop_time = perf_counter()
|
93 |
print(f"Request in {stop_time - start_time}s")
|
94 |
+
|