Upload src/pipeline.py with huggingface_hub
Browse files- src/pipeline.py +14 -6
src/pipeline.py
CHANGED
@@ -9,11 +9,17 @@ from huggingface_hub.constants import HF_HUB_CACHE
|
|
9 |
from pipelines.models import TextToImageRequest
|
10 |
from torch import Generator
|
11 |
from torchao.quantization import quantize_, int8_weight_only
|
12 |
-
from transformers import T5EncoderModel, CLIPTextModel
|
13 |
|
14 |
|
15 |
Pipeline: TypeAlias = FluxPipeline
|
16 |
torch.backends.cudnn.benchmark = True
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
19 |
REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"
|
@@ -41,12 +47,14 @@ def load_pipeline() -> Pipeline:
|
|
41 |
vae=vae,
|
42 |
local_files_only=True,
|
43 |
torch_dtype=torch.bfloat16,
|
44 |
-
)
|
45 |
|
46 |
-
pipeline.
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
for _ in range(2):
|
51 |
pipeline("cat", num_inference_steps=4)
|
52 |
|
|
|
9 |
from pipelines.models import TextToImageRequest
|
10 |
from torch import Generator
|
11 |
from torchao.quantization import quantize_, int8_weight_only
|
12 |
+
from transformers import T5EncoderModel, CLIPTextModel, logging
|
13 |
|
14 |
|
15 |
Pipeline: TypeAlias = FluxPipeline
|
16 |
torch.backends.cudnn.benchmark = True
|
17 |
+
torch.backends.cudnn.benchmark = True
|
18 |
+
torch._inductor.config.conv_1x1_as_mm = True
|
19 |
+
torch._inductor.config.coordinate_descent_tuning = True
|
20 |
+
torch._inductor.config.epilogue_fusion = False
|
21 |
+
torch._inductor.config.coordinate_descent_check_all_directions = True
|
22 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
23 |
|
24 |
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
25 |
REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"
|
|
|
47 |
vae=vae,
|
48 |
local_files_only=True,
|
49 |
torch_dtype=torch.bfloat16,
|
50 |
+
)
|
51 |
|
52 |
+
pipeline.transformer.to(memory_format=torch.channels_last)
|
53 |
+
pipeline.vae.to(memory_format=torch.channels_last)
|
54 |
+
quantize_(pipeline.vae, int8_weight_only())
|
55 |
+
pipeline.vae = torch.compile(pipeline.vae, mode="reduce-overhead", fullgraph=True)
|
56 |
+
pipeline.to("cuda")
|
57 |
+
|
58 |
for _ in range(2):
|
59 |
pipeline("cat", num_inference_steps=4)
|
60 |
|