File size: 3,063 Bytes
a4d6c7b
2b3481d
 
 
 
 
 
 
 
 
 
 
a4d6c7b
2b3481d
 
 
 
f6a0df4
 
 
 
 
 
2b3481d
 
 
 
 
 
 
 
a4d6c7b
 
 
 
 
 
 
2b3481d
a4d6c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e21d6
a4d6c7b
0211f19
25e21d6
a4d6c7b
 
2b3481d
 
 
 
a4d6c7b
2b3481d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# onediff.compile
import os
from typing import TypeAlias

import torch
from PIL.Image import Image
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny
from huggingface_hub.constants import HF_HUB_CACHE
from pipelines.models import TextToImageRequest
from torch import Generator
from torchao.quantization import quantize_, int8_weight_only
from transformers import T5EncoderModel, CLIPTextModel
from functools import partial


Pipeline: TypeAlias = FluxPipeline
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.benchmark = True
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"

CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"

TinyVAE = "madebyollin/taef1"
TinyVAE_REV = "2d552378e58c9c94201075708d7de4e1163b2689"


my_quantize = partial(quantize_, apply_tensor_subclass=int8_weight_only())


path = os.path.join(HF_HUB_CACHE, "models--jokerbit--flux.1-schnell-Robert-int8wo/snapshots/5ef0012f11a863e5111ec56540302a023bc8587b/transformer")
transformer = FluxTransformer2DModel.from_pretrained(
        path, 
        use_safetensors=False,
        local_files_only=True,
        torch_dtype=torch.bfloat16)
vae = AutoencoderTiny.from_pretrained(
        TinyVAE,
        revision=TinyVAE_REV,
        local_files_only=True,
        torch_dtype=torch.bfloat16
        )    
pipeline = FluxPipeline.from_pretrained(
    CHECKPOINT,
    revision=REVISION,
    transformer=transformer,
    vae=vae,
    local_files_only=True,
    torch_dtype=torch.bfloat16,
)

pipeline.transformer.to(memory_format=torch.channels_last)

my_quantize(pipeline.vae)
pipeline.vae = torch.compile(pipeline.vae, mode="reduce-overhead")
pipeline.to("cuda")

def load_pipeline():
    for _ in range(4):
        pipeline("cat", num_inference_steps=4)
    return pipeline


@torch.inference_mode()
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: torch.Generator) -> Image:

    return pipeline(
        request.prompt,
        generator=generator,
        guidance_scale=0.0,
        num_inference_steps=4,
        max_sequence_length=256,
        height=request.height,
        width=request.width,
    ).images[0]


if __name__ == "__main__":
    from time import perf_counter
    PROMPT = 'martyr, semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
    request = TextToImageRequest(prompt=PROMPT, 
            height=None,
            width=None,
            seed=666)
    start_time = perf_counter()
    pipe_ = load_pipeline()
    stop_time = perf_counter()
    print(f"Pipeline is loaded in {stop_time - start_time}s")
    for _ in range(4):
        start_time = perf_counter()
        infer(request, pipe_)
        stop_time = perf_counter()
        print(f"Request in {stop_time - start_time}s")