Upload src/pipeline.py with huggingface_hub
Browse files- src/pipeline.py +3 -2
src/pipeline.py
CHANGED
@@ -11,7 +11,8 @@ from torch import Generator
|
|
11 |
from torchao.quantization import quantize_, int8_weight_only
|
12 |
from transformers import T5EncoderModel, CLIPTextModel, logging
|
13 |
import torch._dynamo
|
14 |
-
|
|
|
15 |
|
16 |
Pipeline: TypeAlias = FluxPipeline
|
17 |
|
@@ -50,7 +51,7 @@ def load_pipeline() -> Pipeline:
|
|
50 |
pipeline.transformer.to(memory_format=torch.channels_last)
|
51 |
pipeline.vae.to(memory_format=torch.channels_last)
|
52 |
quantize_(pipeline.vae, int8_weight_only())
|
53 |
-
pipeline.vae = torch.compile(pipeline.vae, fullgraph=True,
|
54 |
|
55 |
PROMPT = 'semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
|
56 |
with torch.inference_mode():
|
|
|
11 |
from torchao.quantization import quantize_, int8_weight_only
|
12 |
from transformers import T5EncoderModel, CLIPTextModel, logging
|
13 |
import torch._dynamo
|
14 |
+
import torch_tensorrt
|
15 |
+
# torch._dynamo.config.suppress_errors = True
|
16 |
|
17 |
Pipeline: TypeAlias = FluxPipeline
|
18 |
|
|
|
51 |
pipeline.transformer.to(memory_format=torch.channels_last)
|
52 |
pipeline.vae.to(memory_format=torch.channels_last)
|
53 |
quantize_(pipeline.vae, int8_weight_only())
|
54 |
+
pipeline.vae = torch.compile(pipeline.vae, fullgraph=True, backend="tensorrt")
|
55 |
|
56 |
PROMPT = 'semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
|
57 |
with torch.inference_mode():
|