Upload src/pipeline.py with huggingface_hub
Browse files- src/pipeline.py +18 -13
src/pipeline.py
CHANGED
@@ -13,12 +13,14 @@ from transformers import T5EncoderModel, CLIPTextModel, logging
|
|
13 |
|
14 |
|
15 |
Pipeline: TypeAlias = FluxPipeline
|
16 |
-
|
17 |
-
torch.backends.cudnn.benchmark = True
|
18 |
-
torch._inductor.config.conv_1x1_as_mm = True
|
19 |
-
torch._inductor.config.coordinate_descent_tuning = True
|
20 |
-
torch._inductor.config.epilogue_fusion = False
|
21 |
-
torch._inductor.config.coordinate_descent_check_all_directions = True
|
|
|
|
|
22 |
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
23 |
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
24 |
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
@@ -42,16 +44,18 @@ def load_pipeline() -> Pipeline:
|
|
42 |
transformer=transformer,
|
43 |
local_files_only=True,
|
44 |
torch_dtype=torch.bfloat16,
|
45 |
-
)
|
46 |
|
47 |
pipeline.transformer.to(memory_format=torch.channels_last)
|
|
|
48 |
# pipeline.vae.to(memory_format=torch.channels_last)
|
49 |
# quantize_(pipeline.vae, int8_weight_only())
|
50 |
-
pipeline.vae = torch.compile(pipeline.vae, fullgraph=True, mode="max-autotune")
|
51 |
-
pipeline.to("cuda")
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
return pipeline
|
57 |
|
@@ -76,13 +80,14 @@ if __name__ == "__main__":
|
|
76 |
height=None,
|
77 |
width=None,
|
78 |
seed=666)
|
|
|
79 |
start_time = perf_counter()
|
80 |
pipe_ = load_pipeline()
|
81 |
stop_time = perf_counter()
|
82 |
print(f"Pipeline is loaded in {stop_time - start_time}s")
|
83 |
for _ in range(4):
|
84 |
start_time = perf_counter()
|
85 |
-
infer(request, pipe_)
|
86 |
stop_time = perf_counter()
|
87 |
print(f"Request in {stop_time - start_time}s")
|
88 |
|
|
|
13 |
|
14 |
|
15 |
Pipeline: TypeAlias = FluxPipeline
|
16 |
+
|
17 |
+
#torch.backends.cudnn.benchmark = True
|
18 |
+
#torch._inductor.config.conv_1x1_as_mm = True
|
19 |
+
#torch._inductor.config.coordinate_descent_tuning = True
|
20 |
+
#torch._inductor.config.epilogue_fusion = False
|
21 |
+
# torch._inductor.config.coordinate_descent_check_all_directions = True
|
22 |
+
|
23 |
+
|
24 |
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
25 |
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
26 |
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
|
|
44 |
transformer=transformer,
|
45 |
local_files_only=True,
|
46 |
torch_dtype=torch.bfloat16,
|
47 |
+
).to("cuda")
|
48 |
|
49 |
pipeline.transformer.to(memory_format=torch.channels_last)
|
50 |
+
pipeline.transformer = torch.compile(pipeline.transformer, fullgraph=True)
|
51 |
# pipeline.vae.to(memory_format=torch.channels_last)
|
52 |
# quantize_(pipeline.vae, int8_weight_only())
|
53 |
+
# pipeline.vae = torch.compile(pipeline.vae, fullgraph=True, mode="max-autotune")
|
54 |
+
# pipeline.to("cuda")
|
55 |
+
PROMPT = 'semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
|
56 |
+
|
57 |
+
for _ in range(4):
|
58 |
+
pipeline(PROMPT, max_sequence_length=256, height=1024, width=1024, num_inference_steps=4, guidance_scale=0.0)
|
59 |
|
60 |
return pipeline
|
61 |
|
|
|
80 |
height=None,
|
81 |
width=None,
|
82 |
seed=666)
|
83 |
+
generator = torch.Generator(device="cuda")
|
84 |
start_time = perf_counter()
|
85 |
pipe_ = load_pipeline()
|
86 |
stop_time = perf_counter()
|
87 |
print(f"Pipeline is loaded in {stop_time - start_time}s")
|
88 |
for _ in range(4):
|
89 |
start_time = perf_counter()
|
90 |
+
infer(request, pipe_, generator=generator.manual_seed(request.seed))
|
91 |
stop_time = perf_counter()
|
92 |
print(f"Request in {stop_time - start_time}s")
|
93 |
|