transformer only
Browse files- src/pipeline.py +3 -2
src/pipeline.py
CHANGED
@@ -13,6 +13,7 @@ from transformers import T5EncoderModel, CLIPTextModel
|
|
13 |
|
14 |
|
15 |
Pipeline: TypeAlias = FluxPipeline
|
|
|
16 |
torch.backends.cudnn.benchmark = True
|
17 |
|
18 |
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
@@ -38,11 +39,11 @@ def load_pipeline() -> Pipeline:
|
|
38 |
torch_dtype=torch.bfloat16,
|
39 |
)
|
40 |
|
41 |
-
pipeline.to(memory_format=torch.channels_last)
|
42 |
pipeline.to("cuda")
|
43 |
for _ in range(4):
|
44 |
pipeline("cat", num_inference_steps=4)
|
45 |
-
|
46 |
return pipeline
|
47 |
|
48 |
@torch.inference_mode()
|
|
|
13 |
|
14 |
|
15 |
Pipeline: TypeAlias = FluxPipeline
|
16 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
17 |
torch.backends.cudnn.benchmark = True
|
18 |
|
19 |
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
|
|
39 |
torch_dtype=torch.bfloat16,
|
40 |
)
|
41 |
|
42 |
+
pipeline.transformer.to(memory_format=torch.channels_last)
|
43 |
pipeline.to("cuda")
|
44 |
for _ in range(4):
|
45 |
pipeline("cat", num_inference_steps=4)
|
46 |
+
torch.cuda.empty_cache()
|
47 |
return pipeline
|
48 |
|
49 |
@torch.inference_mode()
|