File size: 4,320 Bytes
69edc61
 
 
 
 
 
 
8f0a174
 
69edc61
 
 
 
269a6ad
69edc61
1489d40
 
69edc61
 
 
 
 
 
1489d40
 
 
 
 
 
 
 
 
 
 
 
 
6f928de
 
 
 
 
 
 
1489d40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69edc61
 
 
 
0827af5
 
 
611d391
0827af5
611d391
69edc61
611d391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69edc61
 
 
 
 
 
 
 
 
 
 
 
 
 
51a68f1
 
 
 
 
c5955dd
51a68f1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R Wav2Vec2 French by Jonatas Grosman
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: fr
    metrics:
    - name: Test WER
      type: wer
      value: 16.85
    - name: Test CER
      type: cer
      value: 4.66
    - name: Test WER (+LM)
      type: wer
      value: 16.32
    - name: Test CER (+LM)
      type: cer
      value: 4.21
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: fr
    metrics:
    - name: Dev WER
      type: wer
      value: 22.34
    - name: Dev CER
      type: cer
      value: 9.88
    - name: Dev WER (+LM)
      type: wer
      value: 17.16
    - name: Dev CER (+LM)
      type: cer
      value: 9.38
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: fr
    metrics:
    - name: Test WER
      type: wer
      value: 19.15
---

# XLS-R-1B-FRENCH

Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on French using the [Common Voice 8](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0).
When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)

## Usage

Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:

```python
from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-french")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)
```

Writing your own inference script:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "fr"
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-french"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
```

## Evaluation Commands

1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset mozilla-foundation/common_voice_8_0 --config fr --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```

## Citation
If you want to cite this model you can use this:

```bibtex
@misc{grosman2022wav2vec2-xls-r-1b-french,
  title={XLS-R Wav2Vec2 French by Jonatas Grosman},
  author={Grosman, Jonatas},
  publisher={Hugging Face},
  journal={Hugging Face Hub},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-french}},
  year={2022}
}
```