|
from transformers import Trainer, TrainingArguments, AutoModelForCausalLM, AutoTokenizer |
|
from datasets import load_dataset |
|
|
|
|
|
model_name = "distilgpt2" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
train_data = load_dataset("json", data_files={"train": "data.json"}) |
|
|
|
|
|
def preprocess_function(examples): |
|
inputs = examples["input"] |
|
outputs = examples["output"] |
|
model_inputs = tokenizer(inputs, max_length=512, truncation=True, padding="max_length") |
|
labels = tokenizer(outputs, max_length=512, truncation=True, padding="max_length") |
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
|
|
train_dataset = train_data["train"].map(preprocess_function, batched=True) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
num_train_epochs=3, |
|
per_device_train_batch_size=4, |
|
logging_dir="./logs", |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
model.save_pretrained("./lockin_model") |
|
tokenizer.save_pretrained("./lockin_model") |
|
|