from transformers import AutoTokenizer, AutoModelForCausalLM # Load your fine-tuned model and tokenizer tokenizer = AutoTokenizer.from_pretrained("./lockin_model") model = AutoModelForCausalLM.from_pretrained("./lockin_model") # Function to generate yes/no questions def generate_question(input_text): # Add padding and attention mask inputs = tokenizer( input_text, return_tensors="pt", padding=True, truncation=True, return_attention_mask=True ) output = model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], # Add attention mask max_new_tokens=100, do_sample=True, temperature=1.5, top_p=0.8, top_k=50, pad_token_id=tokenizer.eos_token_id # Explicitly set pad token ID ) return tokenizer.decode(output[0], skip_special_tokens=True) # Example usage prompt = "What the fuck" question = generate_question(prompt) print("Generated Question:", question)